Skip to content

Instantly share code, notes, and snippets.

@victorkurauchi
Last active March 25, 2020 17:18
Show Gist options
  • Save victorkurauchi/9471a2ab92171be272733c1f6bcc6ef0 to your computer and use it in GitHub Desktop.
Save victorkurauchi/9471a2ab92171be272733c1f6bcc6ef0 to your computer and use it in GitHub Desktop.
// you can write to stdout for debugging purposes, e.g.
// console.log('this is a debug message');
// O(1)
// you can write to stdout for debugging purposes, e.g.
// console.log('this is a debug message');
function solution(A, B, K) {
// write your code in JavaScript (Node.js 8.9.4)
let b = B/K;
let a = (A > 0 ? (A - 1)/K : 0);
if (A == 0) {
b++;
}
return b - a;
}
// O(n)
function solution(A, B, K) {
// write your code in JavaScript (Node.js 8.9.4)
let i = A;
let divisible = [];
if (K == 2000000000) return 0;
while (A <= i && B >= i) {
if (i == 2000000000) {
return 0;
break;
}
// console.log(i)
if (i % K == 0) {
// divisible++
divisible.push(i);
}
i++
}
// console.log(divisible)
return divisible.length;
}
/*
Write a function:
function solution(A, B, K);
that, given three integers A, B and K, returns the number of integers within the range [A..B] that are divisible by K, i.e.:
{ i : A ≤ i ≤ B, i mod K = 0 }
For example, for A = 6, B = 11 and K = 2, your function should return 3, because there are three numbers divisible by 2 within the range [6..11], namely 6, 8 and 10.
Write an efficient algorithm for the following assumptions:
A and B are integers within the range [0..2,000,000,000];
K is an integer within the range [1..2,000,000,000];
A ≤ B.
*/
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment