Created
June 12, 2020 13:22
-
-
Save vishwanath79/f3ee494c4aba300baf4bb1475f3421c8 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#%% | |
import numpy as np | |
import pandas as pd | |
data = pd.read_csv("preprocessed_data.csv") | |
data = data.sample(frac=1) | |
train_size = int(0.8 * len(data)) | |
features = data.drop(columns=["Price"]) | |
targets= data["Price"] | |
X_train, X_test = features.values[:train_size, :], features.values[train_size:,:] | |
y_train, y_test = targets.values[:train_size], targets.values[train_size:] | |
corr = data.corr() | |
cmap = sns.diverging_palette(250,10, as_cmap=True) | |
plt.figure(figsize=(40,80)) | |
sns.heatmap(corr[["Price"]], cmap=cmap, vmax=3, square=True,linewidths=.5, cbar_kws={"shrink": .5}, annot=True) | |
import tensorflow as tf | |
model = tf.keras.models.Sequential([tf.keras.layers.Dense(1024, activation=tf.nn.leaky_relu), | |
tf.keras.layers.Dropout(0.5), | |
tf.keras.layers.Dense(512,activation=tf.nn.leaky_relu), | |
tf.keras.layers.Dropout(0.5), | |
tf.keras.layers.Dense(1,activation='sigmoid') | |
]) | |
adam_optimizer = tf.keras.optimizers.Adam() | |
#fix weights per req | |
class_weight = {0: weight_for_A, 1:weight_for_B} | |
model.compile(optimizer=adam_optimizer, loss='binary_crossentropy', metrics=[ | |
tf.keras.metrics.TruePositives(name='tp'), | |
tf.keras.metrics.FalsePositives(name='fp'), | |
tf.keras.metrics.TrueNegatives(name='tn'), | |
tf.keras.metrics.FalseNegatives(name='fn'), | |
tf.keras.metrics.TruePositives(name='tp'), | |
tf.keras.metrics.BinaryAccuracy(name='accuracy'), | |
tf.keras.metrics.Precision(name='precision'), | |
tf.keras.metrics.Recall(name='recall'), | |
tf.keras.metrics.AUC(name='auc'), | |
from keras.callbacks import EarlyStopping, ModelCheckpoint | |
save_early_callback =EarlyStopping(monitor='val_loss', patience=5) | |
save_best_callback = ModelCheckpoint('content/model-{epoch:02d}-{accuracy:.2f}.f5', save_best_only=True, save_weights_only=True) | |
model.fit(X_train,y_train, batch_size=64, class_weight=class_weight,validation_split=0.1,epochs=50, callbacks=[save_early_callback,save_best_callback]) | |
model.evaluate(X_test,y_test) | |
np.round(model.predict(X_test)) | |
#save as f5 if permission errors |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment