Last active
July 15, 2019 06:16
-
-
Save visionNoob/80c430a2c80483e59967f582bbcf2df2 to your computer and use it in GitHub Desktop.
mxnet record viewing.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os, tarfile, subprocess | |
import mxnet as mx | |
from mxnet import gluon, nd, image | |
from mxnet.gluon.data.vision import transforms | |
from gluoncv import utils | |
from gluoncv.model_zoo import get_model | |
import matplotlib.pyplot as plt | |
import numpy as np | |
# gluoncv 같은게 없다고 할 수 도 있는데 그럼 그냥 위에서 빼셈 ㅋ | |
data_iter = mx.io.ImageRecordIter( | |
path_imglist=os.path.join(DATASET_PATH,'cropped_images','records','val1', 'kaggle-car-val1.lst'), | |
path_imgrec=os.path.join(DATASET_PATH,'cropped_images','records','val1','kaggle-car-val1.rec'), | |
path_imgidx=os.path.join(DATASET_PATH,'cropped_images','records','val1','kaggle-car-val1.idx'), | |
data_shape=(3, 224, 224),label_width=1, # output data shape. An 227x227 region will be cropped from the original image. | |
batch_size=4,rand_crop=True, # number of samples per batch | |
resize=256, pad=1 # resize the shorter edge to 256 before cropping | |
# ... you can add more augmentation options as defined in ImageRecordIter. | |
) | |
data_iter.reset() | |
batch = data_iter.next() | |
data = batch.data[0] | |
for i in range(4): | |
plt.subplot(1,4,i+1) | |
plt.imshow(data[i].asnumpy().astype(np.uint8).transpose((1,2,0))) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment