Created
September 19, 2019 18:12
-
-
Save vleugelcomplement/03b4bfb9ae835df470f5f4b4756647cb to your computer and use it in GitHub Desktop.
scatter-density plots
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from scipy.interpolate import interpn | |
from scipy.stats import gaussian_kde | |
from scipy.spatial import cKDTree | |
import seaborn as sb | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib.path as mpath | |
from matplotlib.colors import Normalize | |
from matplotlib import cm | |
import matplotlib as mpl | |
def scatter_density_plot(xx, yy, xrange, yrange, mode="hist", sort=True, modepars={}, ax=None, fig=plt, **kwargs): | |
grid = np.vstack([xx,yy]) | |
ax = plt.gca() if ax is None else ax | |
plotargs = {} | |
if mode == "hist": | |
bins = modepars.get('bins', (15,15)) | |
h, x_e, y_e = np.histogram2d(xx, yy, bins=bins) | |
stepx = x_e[1]-x_e[0] | |
x_e = np.pad(x_e, (1,1), 'constant', constant_values=(x_e[0]-stepx, x_e[-1]+stepx)) | |
stepy = y_e[1]-y_e[0] | |
y_e = np.pad(y_e, (1,1), 'constant', constant_values=(y_e[0]-stepx, y_e[-1]+stepx)) | |
h = np.pad(h, ((1,1), (1,1)), 'constant', constant_values=((0,0), (0,0))) | |
xc = (x_e[1:] + x_e[:-1])/2 | |
yc = (y_e[1:] + y_e[:-1])/2 | |
zz = interpn((xc, yc), h, grid.T, method = "linear") | |
elif mode == "kde": | |
kernel = gaussian_kde(grid) | |
zz = kernel(grid) | |
elif mode == "near": | |
scalingx = (xrange[1] - xrange[0]) | |
scalingy = (yrange[1] - yrange[0]) | |
xxn = (xx - xrange[0]) / scalingx | |
yyn = (yy - yrange[0]) / scalingy | |
gridn = np.vstack([xxn, yyn]) | |
tree = cKDTree(gridn.T) | |
searchradius = modepars.get('searchradius', 0.03) | |
njobs = modepars.get('njobs', 2) | |
nb = tree.query_ball_point(gridn.T, searchradius, n_jobs=njobs) | |
zz = np.fromiter(map(len, nb), dtype=int) | |
circle = mpath.Path.unit_circle() | |
verts = np.copy(circle.vertices) | |
xp1, yp1, xp2, yp2 = ax.figure.bbox.bounds | |
ap = (xp2 - xp1) * searchradius | |
bp = (yp2 - yp1) * searchradius | |
verts[:, 0] *= ap/bp | |
verts[:, 1] *= 1 | |
ell_marker = mpath.Path(verts, circle.codes) | |
area_p = ap*bp*np.pi | |
plotargs['s'] = kwargs.pop('s', area_p) | |
plotargs['marker'] = kwargs.pop('marker', ell_marker) | |
else: | |
raise ValueError(f"Invalid mode: {mode}") | |
if plotargs.get('s', None) == 'auto': | |
plotargs['s'] = mpl.rcParams['lines.markersize'] ** 2 | |
if sort: | |
idx = np.argsort(zz) | |
xx = np.array(xx)[idx] | |
yy = np.array(yy)[idx] | |
zz = zz[idx] | |
mapping = ax.scatter(xx, yy, c=zz, **plotargs, **kwargs) | |
ax.set_xlim(*xrange) | |
ax.set_ylim(*yrange) | |
fig.colorbar(mapping, ax=ax, extend='max') | |
return ax |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment