Last active
February 8, 2024 11:49
-
-
Save wagnerjgoncalves/7cc46ea56be1de73ce0dfff5e23770c6 to your computer and use it in GitHub Desktop.
Pyspark using SparkSession example
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
Example of Python Data Frame with SparkSession. | |
""" | |
from pyspark.conf import SparkConf | |
from pyspark.sql import SparkSession | |
from pyspark.sql.functions import * | |
from pyspark.sql.types import * | |
# variables | |
app = 'exampleDataFrameApi' | |
file = 'renda.csv' | |
# Spark context configurations | |
conf = (SparkConf().setAppName(app) | |
.setMaster("local[8]") | |
.set('spark.driver.maxResultSize', '8g') | |
.set('spark.logConf', 'true')) | |
# Create a new Spark Session to work with Data Frames | |
sparkSession = SparkSession.builder.appName(app).config(conf=conf).getOrCreate() | |
# Load a csv into a Data Frame class | |
schema = StructType([ | |
StructField('Nome completo', StringType(), True), | |
StructField('Cargo Base', StringType(), True), | |
StructField('Cargo em Comissao', StringType(), True), | |
StructField('Remuneracao do Mes', FloatType(), True), | |
StructField('Demais Elementos da Remuneracao', FloatType(), True), | |
StructField('Remuneracao Bruta', FloatType(), True), | |
StructField('Unidade', StringType(), True), | |
StructField('Tp. Log', StringType(), True), | |
StructField('Logadrouro', StringType(), True), | |
StructField('Numero', StringType(), True), | |
StructField('Complemento', StringType(), True), | |
StructField('Jornada', StringType(), True) | |
]) | |
df = sparkSession.read.csv(file, schema=schema, sep=';', encoding='utf-8', header=True) | |
# Show top 20 rows of df | |
df.show() | |
# Show top 100 rows of df | |
df.show(100) | |
# Count all records of df | |
df.count() | |
# Print the schema of df | |
df.printSchema() | |
# Print top 100 names | |
df.select('Nome completo').show(100) | |
# Calculate count, mean, stddev, min, max | |
df.describe(['Remuneracao do Mes']).show() | |
df.describe(['Demais Elementos da Remuneracao']).show() | |
df.describe(['Remuneracao Bruta']).show() | |
# Filter | |
df.filter(df['Remuneracao do Mes'] == 2495).show() | |
df.filter(df['Remuneracao do Mes'] > 20000).count() | |
# Group | |
df.groupBy('Remuneracao do Mes').count().show() | |
df.groupBy('Remuneracao Bruta').count().show() | |
# Sort | |
df.sort(desc('Remuneracao do Mes')).show() | |
# Sort + Group | |
df.groupBy('Remuneracao do Mes').count().sort(desc('Remuneracao do Mes')).show() | |
df.groupBy('Remuneracao Bruta').count().sort(desc('Remuneracao Bruta')).show() | |
# Drop columns | |
df2 = df.drop('Jornada') | |
df2.printSchema() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment