Last active
May 13, 2019 15:55
-
-
Save wangfan860/590d1a9d4ebcef59895bb730ed7c0efd to your computer and use it in GitHub Desktop.
make canine and human maftools plot
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
if (!require("BiocManager")) | |
install.packages("BiocManager") | |
BiocManager::install("maftools") | |
##download rngtools from https://cran.r-project.org/src/contrib/Archive/rngtools/ | |
install.packages("~/Desktop/nature_commu/rngtools_1.3.1.tar.gz", repos = NULL, type = "source") | |
library(maftools) | |
uvm = read.maf(maf = '.maf') | |
skcm = read.maf(maf = '.maf') | |
# download CanFam3.1 from ftp://ftp.ensembl.org/pub/release-96/gtf/canis_familiaris/ | |
oncoplot(maf = skcm, top = 20) | |
## canine mf file | |
mutation= pd.read_csv('41467_2018_8081_MOESM5_ESM.txt', sep='\t') | |
df1 = read_gtf("Canis_familiaris.CanFam3.1.96.gtf.gz") | |
df_genes1 = df1[df1["feature"] == "gene"] | |
ref= df_genes1[['gene_id','gene_name']] | |
ref1=ref[ref.gene_name != ''] | |
ref1.columns = ['Gene','gene_name'] | |
Merge=pd.merge(ref1, mutation, on='Gene', how='inner') | |
Merge['Chromosome']='chr'+ Merge['#Chr'] | |
def tidy_split(df, column, sep='|', keep=False): | |
""" | |
Split the values of a column and expand so the new DataFrame has one split | |
value per row. Filters rows where the column is missing. | |
Params | |
------ | |
df : pandas.DataFrame | |
dataframe with the column to split and expand | |
column : str | |
the column to split and expand | |
sep : str | |
the string used to split the column's values | |
keep : bool | |
whether to retain the presplit value as it's own row | |
Returns | |
------- | |
pandas.DataFrame | |
Returns a dataframe with the same columns as `df`. | |
""" | |
indexes = list() | |
new_values = list() | |
df = df.dropna(subset=[column]) | |
for i, presplit in enumerate(df[column].astype(str)): | |
values = presplit.split(sep) | |
if keep and len(values) > 1: | |
indexes.append(i) | |
new_values.append(presplit) | |
for value in values: | |
indexes.append(i) | |
new_values.append(value) | |
new_df = df.iloc[indexes, :].copy() | |
new_df[column] = new_values | |
return new_df | |
merge = tidy_split(Merge, 'Consequence', sep=',') | |
merge1=merge.replace(['missense_variant'],['Missense_Mutation']) | |
merge2=merge1.replace(['stop_gained','start_lost'],'Nonsense_Mutation') | |
merge3=merge2.replace(['synonymous_variant'],'Silent') | |
merge4=merge3.replace(['inframe_insertion','inframe_deletion'],['In_Frame_Ins','In_Frame_Del']) | |
merge5=merge4.replace(['frameshift_variant'],['Frame_Shift']) | |
merge6=merge5.replace(['splice_donor_variant','splice_acceptor_variant','splice_region_variant'],'Splice_site') | |
merge7=merge6.rename(index=str, columns={"gene_name": "Hugo_Symbol", "Position": "Start_Position","Consequence":"Variant_Classification","Ref":"Reference_Allele","Alt":"Tumor_Seq_Allele2","Sample":"Tumor_Sample_Barcode"}) | |
merge7['End_Position']=merge7['Start_Position'] | |
merge7['Variant_Type']='SNP' | |
merge8= merge7[merge7.IMPACT != 'LOW'] | |
merge8.to_csv('canine_71cases.maf', sep='\t') | |
copy= pd.read_csv('/Users/fanwang/Desktop/nature_commu/skcm/4b7a5729-b83e-4837-9b61-a6002dce1c0a/skcm_filtered.maf', sep='\t') | |
copy1=copy | |
len(copy1[(copy1.Hugo_Symbol=='BRAF') & (copy1.Variant_Classification != 'Silent')].Tumor_Sample_Barcode.unique()) | |
len(copy1[(copy1.Hugo_Symbol=='RAS') & (copy1.Variant_Classification != 'Silent')].Tumor_Sample_Barcode.unique()) | |
len(copy1[(copy1.Hugo_Symbol=='NF1') & (copy1.Variant_Classification != 'Silent')].Tumor_Sample_Barcode.unique()) | |
len(copy1[(copy1.Hugo_Symbol=='NRAS') & (copy1.Variant_Classification != 'Silent')].Tumor_Sample_Barcode.unique()) | |
braf_pt= list(copy1[(copy1.Hugo_Symbol=='BRAF') & (copy1.Variant_Classification != 'Silent')].Tumor_Sample_Barcode.unique()) | |
nf1_pt= list(copy1[(copy1.Hugo_Symbol=='NF1') & (copy1.Variant_Classification != 'Silent')].Tumor_Sample_Barcode.unique()) | |
nras_pt=list(copy1[(copy1.Hugo_Symbol=='NRAS') & (copy1.Variant_Classification != 'Silent')].Tumor_Sample_Barcode.unique()) | |
all_mutant = set(list(braf_pt) + list(nras_pt) + list(nf1_pt)) | |
negative = copy1[~ copy1.Tumor_Sample_Barcode.isin(all_mutant)] | |
negative.to_csv('triple_wt_cohort.maf',sep='\t') | |
braf=copy1[copy1.Tumor_Sample_Barcode.isin(braf_pt)] | |
braf.to_csv('braf_mutant_cohort.maf',sep='\t') | |
nras =copy1[copy1.Tumor_Sample_Barcode.isin(nras_pt)] | |
nras.to_csv('nras_mutant_cohort.maf',sep='\t') | |
nf1 = copy1[copy1.Tumor_Sample_Barcode.isin(nf1_pt)] | |
nf1.to_csv('nf1_mutant_cohort.maf',sep='\t') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Nonsense mutations include stop-gain and start-loss.