Last active
March 4, 2019 21:08
-
-
Save wanirepo/a71f86cca33b7e54c2ba to your computer and use it in GitHub Desktop.
calculate modularity Q
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function q = modularity_wani(A,z,varargin) | |
% function q = modularity_wani(A,z, [optional 'scalar' or 'degree']) | |
% | |
% feature: This function calculates the modularity (same with | |
% assortativity), q. It works for categorical and continuous | |
% (needs optional input, 'scalar') attributes. | |
% | |
% input: z attributes or category membership | |
% A adjacency matrix | |
% | |
% optional input: | |
% 'scalar' calculate the assortativity coefficient (which is a | |
% network-based generalization of the Pearson correlation | |
% coefficient). | |
% 'degree' calculate the degree assortativity coefficient (a special | |
% case of scalar assortativity coefficient. In this case, | |
% you don't need z. eg) q = modularity_wani(A,[],'degree') | |
% | |
% output: q modularity or assortativity coefficient | |
% | |
% All calculations are based on the lecture note of Aaron Clauset's Network | |
% analysis and modeling class (Fall 2014). | |
% see http://tuvalu.santafe.edu/~aaronc/courses/5352/ | |
doscalar = false; | |
dodegree = false; | |
docateg = true; | |
for i = 1:length(varargin) | |
if ischar(varargin{i}) | |
switch varargin{i} | |
% functional commands | |
case {'scalar'} | |
doscalar = true; | |
docateg = false; | |
case {'degree'} | |
dodegree = true; | |
docateg = false; | |
end | |
end | |
end | |
% examine the data | |
if ~dodegree | |
if length(z) ~= size(A,1) | |
error('The length of z should be same with the network size. Check the data.'); | |
end | |
end | |
m2 = sum(sum(A)); % 2m | |
% 1. categorical attributes | |
if docateg | |
u = unique(z); | |
q = 0; | |
for i = 1:numel(u) | |
% Eq. (4) of Lecture note 5 | |
q = q + sum(sum(A(z==u(i),z==u(i))))./m2 - (sum(sum(A(z==u(i),:)))./m2)^2; | |
end | |
% 2. scalar attributes | |
elseif doscalar | |
k = sum(A); | |
kikj = k'*k; | |
if size(z,2)<size(z,1), z = z'; end | |
zizj = z'*z; | |
% Eq. (6) of Lecture note 5 | |
q = sum(sum((A - kikj ./ m2) .* zizj)) ./ ... | |
sum(sum(((repmat(k,length(k),1) .* eye(length(k))) - (kikj ./ m2)) .* zizj)); | |
% 3. degree assortativity coefficient | |
elseif dodegree | |
k = sum(A); | |
kikj = k'*k; | |
q = sum(sum((A - kikj ./ m2) .* kikj)) ./ ... | |
sum(sum(((repmat(k,length(k),1) .* eye(length(k))) - (kikj ./ m2)) .* kikj)); | |
end | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Matrix-based calculation is much faster!!