Last active
March 21, 2025 19:02
-
-
Save wiesehahn/7e865a04a8d8646944fd13ffc1f483de to your computer and use it in GitHub Desktop.
Compare image compression algorithms regarding size and performance.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# pak::pak("USDAForestService/gdalraster") | |
library(gdalraster) | |
library(purrr) | |
library(fs) | |
# sset gdal configurations | |
set_config_option("GDAL_NUM_THREADS", "16") | |
set_config_option("GDAL_CACHEMAX", "4000") | |
set_config_option("OVERVIEWS", "IGNORE_EXISTING") | |
# get orthoimages from LGLN open data | |
urls <- c( | |
"https://dop20-rgbi.s3.eu-de.cloud-object-storage.appdomain.cloud/324905842/2024-09-05/dop20rgbi_32_490_5842_2_ni_2024-09-05.tif", | |
"https://dop20-rgbi.s3.eu-de.cloud-object-storage.appdomain.cloud/326085740/2022-05-09/dop20rgbi_32_608_5740_2_ni_2022-05-09.tif", | |
"https://dop20-rgbi.s3.eu-de.cloud-object-storage.appdomain.cloud/326085732/2022-05-09/dop20rgbi_32_608_5732_2_ni_2022-05-09.tif", | |
"https://dop20-rgbi.s3.eu-de.cloud-object-storage.appdomain.cloud/326125846/2024-09-21/dop20rgbi_32_612_5846_2_ni_2024-09-21.tif", | |
"https://dop20-rgbi.s3.eu-de.cloud-object-storage.appdomain.cloud/326045852/2024-09-21/dop20rgbi_32_604_5852_2_ni_2024-09-21.tif") | |
dsns <- paste0("/vsicurl/", urls) # prefix for virtual file source | |
# convert list of image paths to gdalraster objects | |
dss <- dsns |> | |
map(\(datasourcename) new(GDALRaster, datasourcename, read_only = TRUE)) | |
# list compression types for images | |
compression <- dss |> | |
map(\(datasource) datasource$getMetadataItem(band = 0, mdi_name = "COMPRESSION", domain = "IMAGE_STRUCTURE")) | |
# list image sizes | |
size <- dsns |> | |
map(\(datasourcename) utils:::format.object_size(vsi_stat(datasourcename, "size"), "auto")) | |
# Create a function to measure performance for each datasource and compression | |
raster_compression <- function(dsns, options) { | |
results <- list() | |
for (datasourcename in dsns) { | |
for (option in options) { | |
# Start timer | |
start_time <- Sys.time() | |
output_file <- file_temp(ext = ".tif") | |
temp_raster <- createCopy( | |
src_filename = datasourcename, | |
dst_filename = output_file, | |
format = "COG", | |
options = option$setting | |
) | |
# End timer | |
end_time <- Sys.time() | |
runtime <- as.numeric(difftime(end_time, start_time, units = "secs")) | |
# Get file size in MB | |
data_size_uncompressed <- vsi_stat(datasourcename, "size") / (1024^2) | |
data_size_compressed <- vsi_stat(output_file, "size") / (1024^2) | |
# Store results | |
results[[length(results) + 1]] <- list( | |
datasource = basename(datasourcename), | |
settings = option$naming, | |
uncompressed_mb = data_size_uncompressed, | |
compressed_mb = data_size_compressed, | |
runtime_sec = runtime | |
) | |
} | |
} | |
# Convert list to data frame | |
results_df <- do.call(rbind, lapply(results, data.frame)) | |
return(results_df) | |
} | |
# create list of options | |
options <- list( | |
# lossless | |
list(setting = c("COMPRESS=NONE")), | |
list(setting = c("COMPRESS=LZW", "PREDICTOR=YES")), | |
list(setting = c("COMPRESS=LZW", "PREDICTOR=NO")), | |
list(setting = c("COMPRESS=DEFLATE", "PREDICTOR=YES", "LEVEL=1")), | |
list(setting = c("COMPRESS=DEFLATE", "PREDICTOR=YES", "LEVEL=6")), | |
list(setting = c("COMPRESS=DEFLATE", "PREDICTOR=YES", "LEVEL=9")), | |
list(setting = c("COMPRESS=DEFLATE", "PREDICTOR=NO", "LEVEL=1")), | |
list(setting = c("COMPRESS=DEFLATE", "PREDICTOR=NO", "LEVEL=6")), | |
list(setting = c("COMPRESS=DEFLATE", "PREDICTOR=NO", "LEVEL=9")), | |
list(setting = c("COMPRESS=LZMA", "LEVEL=1")), | |
list(setting = c("COMPRESS=LZMA", "LEVEL=9")), | |
list(setting = c("COMPRESS=ZSTD", "PREDICTOR=YES", "LEVEL=1")), | |
list(setting = c("COMPRESS=ZSTD", "PREDICTOR=YES", "LEVEL=9")), | |
list(setting = c("COMPRESS=ZSTD", "PREDICTOR=YES", "LEVEL=22")), | |
list(setting = c("COMPRESS=ZSTD", "PREDICTOR=NO", "LEVEL=1")), | |
list(setting = c("COMPRESS=ZSTD", "PREDICTOR=NO", "LEVEL=9")), | |
list(setting = c("COMPRESS=ZSTD", "PREDICTOR=NO", "LEVEL=22")), | |
list(setting = c("COMPRESS=WEBP", "QUALITY=100")), | |
list(setting = c("COMPRESS=LERC", "MAX_Z_ERROR=0")), | |
list(setting = c("COMPRESS=LERC_DEFLATE", "LEVEL=1")), | |
list(setting = c("COMPRESS=LERC_DEFLATE", "LEVEL=6")), | |
list(setting = c("COMPRESS=LERC_DEFLATE", "LEVEL=9")), | |
list(setting = c("COMPRESS=LERC_ZSTD", "LEVEL=1")), | |
list(setting = c("COMPRESS=LERC_ZSTD", "LEVEL=9")), | |
list(setting = c("COMPRESS=LERC_ZSTD", "LEVEL=22")), | |
# lossy overviews | |
list(setting = c("COMPRESS=WEBP", "QUALITY=100", "OVERVIEW_QUALITY=75")), | |
# lossy | |
list(setting = c("COMPRESS=WEBP", "QUALITY=75")) | |
) | |
for (i in 1:length(options)) { | |
options[[i]]$naming <- paste(options[[i]]$setting, collapse = ", ") | |
} | |
# apply function on list | |
benchmark_results <- raster_compression(dsns, options) |
Results for Digital Terrain Models
# pak::pak("USDAForestService/gdalraster")
library(gdalraster)
library(purrr)
library(fs)
# Sset gdal configurations (for reproducability?)
set_config_option("GDAL_NUM_THREADS", "16")
set_config_option("GDAL_CACHEMAX", "4000")
set_config_option("OVERVIEWS", "IGNORE_EXISTING")
urls <- c(
"https://dgm.s3.eu-de.cloud-object-storage.appdomain.cloud/325735712/2016-04-04/dgm1_32_573_5712_1_ni_2016.tif",
"https://dgm.s3.eu-de.cloud-object-storage.appdomain.cloud/326025743/2018-04-09/dgm1_32_602_5743_1_ni_2018.tif",
"https://dgm.s3.eu-de.cloud-object-storage.appdomain.cloud/326065787/2019-02-27/dgm1_32_606_5787_1_ni_2019.tif",
"https://dgm.s3.eu-de.cloud-object-storage.appdomain.cloud/326065850/2020-04-07/dgm1_32_606_5850_1_ni_2020.tif",
"https://dgm.s3.eu-de.cloud-object-storage.appdomain.cloud/325045930/2017-02-15/dgm1_32_504_5930_1_ni_2017.tif")
dsns <- paste0("/vsicurl/", urls) # prefix for virtual file source
# Create a function to measure performance for each datasource and compression
raster_compression <- function(dsns, options) {
results <- list()
for (datasourcename in dsns) {
for (option in options) {
output_file <- file_temp(ext = ".tif")
write_ds <- function(){
createCopy(
src_filename = datasourcename,
dst_filename = output_file,
format = "COG",
options = option$setting
)
}
# Get write time
writetime <- system.time(write_ds())["elapsed"]
# Get file size in MB
data_size_uncompressed <- vsi_stat(datasourcename, "size") / (1024^2)
data_size_compressed <- vsi_stat(output_file, "size") / (1024^2)
# Get read time
img <- new(GDALRaster, output_file)
readtime <- system.time(read_ds(img))["elapsed"]
# Store results
results[[length(results) + 1]] <- list(
datasource = basename(datasourcename),
settings = option$naming,
uncompressed_mb = data_size_uncompressed,
compressed_mb = data_size_compressed,
writetime_sec = writetime,
readtime_sec = readtime
)
}
}
# Convert list to data frame
results_df <- do.call(rbind, lapply(results, data.frame))
return(results_df)
}
# create list of options
options <- list(
# lossless
list(setting = c("COMPRESS=NONE")),
list(setting = c("COMPRESS=LZW", "PREDICTOR=YES")),
list(setting = c("COMPRESS=LZW", "PREDICTOR=NO")),
list(setting = c("COMPRESS=DEFLATE", "PREDICTOR=YES", "LEVEL=1")),
list(setting = c("COMPRESS=DEFLATE", "PREDICTOR=YES", "LEVEL=6")),
list(setting = c("COMPRESS=DEFLATE", "PREDICTOR=YES", "LEVEL=9")),
list(setting = c("COMPRESS=DEFLATE", "PREDICTOR=NO", "LEVEL=1")),
list(setting = c("COMPRESS=DEFLATE", "PREDICTOR=NO", "LEVEL=6")),
list(setting = c("COMPRESS=DEFLATE", "PREDICTOR=NO", "LEVEL=9")),
list(setting = c("COMPRESS=LZMA", "LEVEL=1")),
list(setting = c("COMPRESS=LZMA", "LEVEL=9")),
list(setting = c("COMPRESS=ZSTD", "PREDICTOR=YES", "LEVEL=1")),
list(setting = c("COMPRESS=ZSTD", "PREDICTOR=YES", "LEVEL=9")),
list(setting = c("COMPRESS=ZSTD", "PREDICTOR=YES", "LEVEL=22")),
list(setting = c("COMPRESS=ZSTD", "PREDICTOR=NO", "LEVEL=1")),
list(setting = c("COMPRESS=ZSTD", "PREDICTOR=NO", "LEVEL=9")),
list(setting = c("COMPRESS=ZSTD", "PREDICTOR=NO", "LEVEL=22")),
list(setting = c("COMPRESS=LERC", "MAX_Z_ERROR=0")),
list(setting = c("COMPRESS=LERC_DEFLATE", "LEVEL=1")),
list(setting = c("COMPRESS=LERC_DEFLATE", "LEVEL=6")),
list(setting = c("COMPRESS=LERC_DEFLATE", "LEVEL=9")),
list(setting = c("COMPRESS=LERC_ZSTD", "LEVEL=1")),
list(setting = c("COMPRESS=LERC_ZSTD", "LEVEL=9")),
list(setting = c("COMPRESS=LERC_ZSTD", "LEVEL=22"))
)
for (i in 1:length(options)) {
options[[i]]$naming <- paste(options[[i]]$setting, collapse = ", ")
}
# apply function on list
benchmark_results <- raster_compression(dsns, options)
# plot
library(gt)
library(dplyr)
benchmark_results |>
mutate(relative_size = compressed_mb / uncompressed_mb) |>
group_by(settings) |>
summarise(across(c(compressed_mb, relative_size, writetime_sec, readtime_sec),
list(mean = mean, sd = sd),
.names = "{.col}_{.fn}")) |>
arrange(desc(relative_size_mean)) |>
# Create the gt table
gt() |>
fmt_number(columns = ends_with("_mean"), decimals = 2) |>
fmt_number(columns = ends_with("_sd"), decimals = 2) |>
fmt_number(
columns = contains("size"),
scale_by = 100,
decimals = 1
) |>
cols_merge_uncert(
col_val = compressed_mb_mean,
col_uncert = compressed_mb_sd
) |>
cols_merge_uncert(
col_val = relative_size_mean,
col_uncert = relative_size_sd
) |>
cols_merge_uncert(
col_val = readtime_sec_mean,
col_uncert = readtime_sec_sd
) |>
cols_merge_uncert(
col_val = writetime_sec_mean,
col_uncert = writetime_sec_sd
) |>
cols_label(
settings = "Settings",
compressed_mb_mean = "Absolute Size (MB)",
relative_size_mean = "Relative Size (%)",
writetime_sec_mean = "Runtime Write (s)",
readtime_sec_mean = "Runtime Read (s)"
) |>
tab_header(
title = "Comparison of Compression Performances",
subtitle = "Size and processing time (mean ± standard deviation) depending on compression settings",
) |>
tab_footnote(
footnote = "All tested algorithms are lossless compression, WEBP which performes best with Orthoimages is not possible with 1-band data.",
locations = cells_column_labels(columns = settings)
) |>
tab_source_note(source_note = md(
"Source: Original images were five DTM tiles (1x1km) from LGLN. Original images were stored as LZW compressed COGs (size: 3.96 ± 0.31 MB)."
))
Comparison of Compression Performances | ||||
Size and processing time (mean ± standard deviation) depending on compression settings | ||||
Settings1 | Absolute Size (MB) | Relative Size (%) | Runtime Write (s) | Runtime Read (s) |
---|---|---|---|---|
COMPRESS=NONE | 5.00 ± 0.00 | 126.9 ± 9.6 | 1.32 ± 0.33 | 0.02 ± 0.01 |
COMPRESS=LERC, MAX_Z_ERROR=0 | 4.80 ± 0.00 | 121.8 ± 9.2 | 0.06 ± 0.01 | 0.03 ± 0.01 |
COMPRESS=LZW, PREDICTOR=NO | 3.96 ± 0.31 | 100.0 ± 0.0 | 0.07 ± 0.01 | 0.02 ± 0.01 |
COMPRESS=LERC_ZSTD, LEVEL=1 | 3.76 ± 0.18 | 95.2 ± 6.3 | 0.06 ± 0.01 | 0.02 ± 0.01 |
COMPRESS=ZSTD, PREDICTOR=NO, LEVEL=1 | 3.73 ± 0.18 | 94.5 ± 6.0 | 0.05 ± 0.01 | 0.02 ± 0.01 |
COMPRESS=LZW, PREDICTOR=YES | 3.37 ± 0.30 | 85.6 ± 11.8 | 0.07 ± 0.01 | 0.03 ± 0.01 |
COMPRESS=DEFLATE, PREDICTOR=NO, LEVEL=1 | 3.13 ± 0.35 | 78.8 ± 2.9 | 0.06 ± 0.01 | 0.03 ± 0.01 |
COMPRESS=LERC_DEFLATE, LEVEL=1 | 3.09 ± 0.37 | 77.9 ± 3.2 | 0.06 ± 0.01 | 0.02 ± 0.01 |
COMPRESS=DEFLATE, PREDICTOR=NO, LEVEL=6 | 3.02 ± 0.32 | 76.2 ± 2.4 | 0.07 ± 0.01 | 0.02 ± 0.01 |
COMPRESS=LERC_DEFLATE, LEVEL=6 | 2.96 ± 0.32 | 74.6 ± 2.3 | 0.08 ± 0.00 | 0.02 ± 0.01 |
COMPRESS=LERC_ZSTD, LEVEL=9 | 2.92 ± 0.24 | 73.8 ± 2.0 | 0.12 ± 0.01 | 0.02 ± 0.01 |
COMPRESS=ZSTD, PREDICTOR=NO, LEVEL=9 | 2.89 ± 0.23 | 72.9 ± 1.8 | 0.10 ± 0.01 | 0.02 ± 0.01 |
COMPRESS=DEFLATE, PREDICTOR=NO, LEVEL=9 | 2.86 ± 0.30 | 72.1 ± 2.6 | 0.13 ± 0.01 | 0.03 ± 0.01 |
COMPRESS=LERC_DEFLATE, LEVEL=9 | 2.81 ± 0.30 | 70.9 ± 2.2 | 0.14 ± 0.01 | 0.02 ± 0.01 |
COMPRESS=ZSTD, PREDICTOR=NO, LEVEL=22 | 2.74 ± 0.25 | 69.1 ± 1.8 | 1.04 ± 0.01 | 0.02 ± 0.01 |
COMPRESS=LERC_ZSTD, LEVEL=22 | 2.71 ± 0.26 | 68.5 ± 1.8 | 0.42 ± 0.02 | 0.02 ± 0.01 |
COMPRESS=DEFLATE, PREDICTOR=YES, LEVEL=1 | 2.60 ± 0.24 | 66.0 ± 8.9 | 0.06 ± 0.02 | 0.02 ± 0.01 |
COMPRESS=ZSTD, PREDICTOR=YES, LEVEL=1 | 2.56 ± 0.25 | 65.0 ± 9.1 | 0.06 ± 0.01 | 0.02 ± 0.01 |
COMPRESS=DEFLATE, PREDICTOR=YES, LEVEL=6 | 2.56 ± 0.24 | 65.0 ± 8.9 | 0.08 ± 0.00 | 0.02 ± 0.01 |
COMPRESS=DEFLATE, PREDICTOR=YES, LEVEL=9 | 2.53 ± 0.24 | 64.2 ± 8.9 | 0.22 ± 0.02 | 0.02 ± 0.01 |
COMPRESS=ZSTD, PREDICTOR=YES, LEVEL=9 | 2.51 ± 0.23 | 63.7 ± 8.5 | 0.10 ± 0.01 | 0.03 ± 0.01 |
COMPRESS=ZSTD, PREDICTOR=YES, LEVEL=22 | 2.48 ± 0.22 | 63.0 ± 8.5 | 1.41 ± 0.10 | 0.03 ± 0.01 |
COMPRESS=LZMA, LEVEL=1 | 2.20 ± 0.09 | 55.9 ± 3.7 | 0.29 ± 0.02 | 0.05 ± 0.01 |
COMPRESS=LZMA, LEVEL=9 | 1.98 ± 0.13 | 50.0 ± 1.8 | 0.72 ± 0.02 | 0.04 ± 0.01 |
Source: Original images were five DTM tiles (1x1km) from LGLN. Original images were stored as LZW compressed COGs (size: 3.96 ± 0.31 MB). | ||||
1 All tested algorithms are lossless compression, WEBP which performes best with Orthoimages is not possible with 1-band data. |
Results for Orthophotos
# pak::pak("USDAForestService/gdalraster")
library(gdalraster)
library(purrr)
library(fs)
# Set gdal configurations (for reproducability?)
# Multi-threaded (comment GDAL_NUM_THREADS to use default single threaded
set_config_option("GDAL_NUM_THREADS", "32")
set_config_option("GDAL_CACHEMAX", "8000")
set_config_option("OVERVIEWS", "IGNORE_EXISTING")
# get orthoimages from LGLN open data
urls <- c(
"https://dop20-rgbi.s3.eu-de.cloud-object-storage.appdomain.cloud/324905842/2024-09-05/dop20rgbi_32_490_5842_2_ni_2024-09-05.tif",
"https://dop20-rgbi.s3.eu-de.cloud-object-storage.appdomain.cloud/326085740/2022-05-09/dop20rgbi_32_608_5740_2_ni_2022-05-09.tif",
"https://dop20-rgbi.s3.eu-de.cloud-object-storage.appdomain.cloud/326085732/2022-05-09/dop20rgbi_32_608_5732_2_ni_2022-05-09.tif",
"https://dop20-rgbi.s3.eu-de.cloud-object-storage.appdomain.cloud/326125846/2024-09-21/dop20rgbi_32_612_5846_2_ni_2024-09-21.tif",
"https://dop20-rgbi.s3.eu-de.cloud-object-storage.appdomain.cloud/326045852/2024-09-21/dop20rgbi_32_604_5852_2_ni_2024-09-21.tif")
dsns <- paste0("/vsicurl/", urls) # prefix for virtual file source
# Create a function to measure performance for each datasource and compression
raster_compression <- function(dsns, options) {
results <- list()
for (datasourcename in dsns) {
for (option in options) {
output_file <- file_temp(ext = ".tif")
write_ds <- function(){
createCopy(
src_filename = datasourcename,
dst_filename = output_file,
format = "COG",
options = option$setting
)
}
# Get write time
writetime <- system.time(write_ds())["elapsed"]
# Get file size in MB
data_size_uncompressed <- vsi_stat(datasourcename, "size") / (1024^2)
data_size_compressed <- vsi_stat(output_file, "size") / (1024^2)
# Get read time
img <- new(GDALRaster, output_file)
readtime <- system.time(read_ds(img))["elapsed"]
# Store results
results[[length(results) + 1]] <- list(
datasource = basename(datasourcename),
settings = option$naming,
uncompressed_mb = data_size_uncompressed,
compressed_mb = data_size_compressed,
writetime_sec = writetime,
readtime_sec = readtime
)
}
}
# Convert list to data frame
results_df <- do.call(rbind, lapply(results, data.frame))
return(results_df)
}
# create list of options
options <- list(
# lossless
list(setting = c("COMPRESS=NONE")),
list(setting = c("COMPRESS=LZW", "PREDICTOR=YES")),
list(setting = c("COMPRESS=LZW", "PREDICTOR=NO")),
list(setting = c("COMPRESS=DEFLATE", "PREDICTOR=YES", "LEVEL=1")),
list(setting = c("COMPRESS=DEFLATE", "PREDICTOR=YES", "LEVEL=6")),
list(setting = c("COMPRESS=DEFLATE", "PREDICTOR=YES", "LEVEL=9")),
list(setting = c("COMPRESS=DEFLATE", "PREDICTOR=NO", "LEVEL=1")),
list(setting = c("COMPRESS=DEFLATE", "PREDICTOR=NO", "LEVEL=6")),
list(setting = c("COMPRESS=DEFLATE", "PREDICTOR=NO", "LEVEL=9")),
list(setting = c("COMPRESS=LZMA", "LEVEL=1")),
list(setting = c("COMPRESS=LZMA", "LEVEL=9")),
list(setting = c("COMPRESS=ZSTD", "PREDICTOR=YES", "LEVEL=1")),
list(setting = c("COMPRESS=ZSTD", "PREDICTOR=YES", "LEVEL=9")),
list(setting = c("COMPRESS=ZSTD", "PREDICTOR=YES", "LEVEL=22")),
list(setting = c("COMPRESS=ZSTD", "PREDICTOR=NO", "LEVEL=1")),
list(setting = c("COMPRESS=ZSTD", "PREDICTOR=NO", "LEVEL=9")),
list(setting = c("COMPRESS=ZSTD", "PREDICTOR=NO", "LEVEL=22")),
list(setting = c("COMPRESS=WEBP", "QUALITY=100")),
list(setting = c("COMPRESS=LERC", "MAX_Z_ERROR=0")),
list(setting = c("COMPRESS=LERC_DEFLATE", "LEVEL=1")),
list(setting = c("COMPRESS=LERC_DEFLATE", "LEVEL=6")),
list(setting = c("COMPRESS=LERC_DEFLATE", "LEVEL=9")),
list(setting = c("COMPRESS=LERC_ZSTD", "LEVEL=1")),
list(setting = c("COMPRESS=LERC_ZSTD", "LEVEL=9")),
list(setting = c("COMPRESS=LERC_ZSTD", "LEVEL=22")),
# lossy overviews
list(setting = c("COMPRESS=WEBP", "QUALITY=100", "OVERVIEW_QUALITY=75")),
# lossy
list(setting = c("COMPRESS=WEBP", "QUALITY=75"))
)
for (i in 1:length(options)) {
options[[i]]$naming <- paste(options[[i]]$setting, collapse = ", ")
}
# apply function on list
benchmark_results <- raster_compression(dsns, options)
# plot
library(gt)
library(dplyr)
benchmark_results |>
mutate(relative_size = compressed_mb / uncompressed_mb,
relative_write_speed = uncompressed_mb / writetime_sec,
relative_read_speed = compressed_mb / readtime_sec) |>
group_by(settings) |>
summarise(across(c(compressed_mb, relative_size, writetime_sec, readtime_sec, relative_write_speed, relative_read_speed),
list(mean = mean, sd = sd),
.names = "{.col}_{.fn}")) |>
arrange(desc(relative_size_mean)) |>
# Create the gt table
gt() |>
fmt_number(columns = ends_with(c("_mean", "_sd")), decimals = 0) |>
fmt_number(columns = contains(c("time", "speed")), decimals = 1) |>
fmt_number(
columns = contains("size"),
scale_by = 100,
decimals = 0
) |>
cols_merge_uncert(
col_val = compressed_mb_mean,
col_uncert = compressed_mb_sd
) |>
cols_merge_uncert(
col_val = relative_size_mean,
col_uncert = relative_size_sd
) |>
cols_merge_uncert(
col_val = readtime_sec_mean,
col_uncert = readtime_sec_sd
) |>
cols_merge_uncert(
col_val = writetime_sec_mean,
col_uncert = writetime_sec_sd
) |>
cols_merge_uncert(
col_val = relative_write_speed_mean,
col_uncert = relative_write_speed_sd
) |>
cols_merge_uncert(
col_val = relative_read_speed_mean,
col_uncert = relative_read_speed_sd
) |>
cols_label(
settings = "Settings",
compressed_mb_mean = "Absolute (MB)",
relative_size_mean = "Relative (%)",
writetime_sec_mean = "Write (s)",
readtime_sec_mean = "Read (s)",
relative_write_speed_mean = "Write (MB/s)",
relative_read_speed_mean = "Read (MB/s)"
) |>
tab_spanner(
label = "Size",
columns = c(compressed_mb_mean, relative_size_mean)
) |>
tab_spanner(
label = "Time",
columns = c(writetime_sec_mean, readtime_sec_mean)
) |>
tab_spanner(
label = "Speed",
columns = c(relative_write_speed_mean, relative_read_speed_mean)
) |>
tab_header(
title = "Comparison of Compression Performances",
subtitle = "Size and processing time (mean ± standard deviation) depending on compression settings",
) |>
tab_footnote(
footnote = "WEBP compression with QUALITY < 100 implies lossy compression, all other tested algorithms are lossless compression",
locations = cells_column_labels(columns = settings)
) |>
tab_source_note(source_note = md(
"Source: Original images were five uncompressed Orthophotos (2x2km) from LGLN. Original images were stored as uncompressed COGs (size: 539 ± 0 MB)."
))
Single-threaded (GDAL_NUM_THREADS=DEFAULT
, GDAL_CacheMAX=4000
)
Comparison of Compression Performances | ||||||
Size and processing time (mean ± standard deviation) depending on compression settings | ||||||
Settings1 |
Size
|
Time
|
Speed
|
|||
---|---|---|---|---|---|---|
Absolute (MB) | Relative (%) | Write (s) | Read (s) | Write (MB/s) | Read (MB/s) | |
COMPRESS=NONE | 539 ± 0 | 100 ± 0 | 62.2 ± 1.7 | 4.5 ± 0.3 | 8.7 ± 0.2 | 120.3 ± 7.4 |
COMPRESS=LZW, PREDICTOR=NO | 512 ± 24 | 95 ± 4 | 64.7 ± 2.5 | 5.8 ± 0.2 | 8.3 ± 0.3 | 88.6 ± 6.9 |
COMPRESS=ZSTD, PREDICTOR=NO, LEVEL=1 | 429 ± 6 | 80 ± 1 | 62.8 ± 3.7 | 4.7 ± 0.2 | 8.6 ± 0.5 | 91.7 ± 4.1 |
COMPRESS=ZSTD, PREDICTOR=NO, LEVEL=9 | 408 ± 20 | 76 ± 4 | 69.0 ± 4.2 | 4.8 ± 0.2 | 7.8 ± 0.5 | 85.8 ± 8.0 |
COMPRESS=DEFLATE, PREDICTOR=NO, LEVEL=1 | 407 ± 18 | 76 ± 3 | 64.8 ± 2.6 | 5.1 ± 0.2 | 8.3 ± 0.4 | 79.5 ± 7.0 |
COMPRESS=DEFLATE, PREDICTOR=NO, LEVEL=6 | 402 ± 20 | 75 ± 4 | 67.4 ± 2.8 | 5.2 ± 0.3 | 8.0 ± 0.3 | 77.5 ± 7.5 |
COMPRESS=DEFLATE, PREDICTOR=NO, LEVEL=9 | 390 ± 22 | 72 ± 4 | 80.7 ± 3.1 | 5.2 ± 0.2 | 6.7 ± 0.3 | 74.6 ± 7.1 |
COMPRESS=ZSTD, PREDICTOR=NO, LEVEL=22 | 378 ± 26 | 70 ± 5 | 278.4 ± 3.3 | 5.0 ± 0.2 | 1.9 ± 0.0 | 75.7 ± 8.0 |
COMPRESS=LZW, PREDICTOR=YES | 368 ± 26 | 68 ± 5 | 65.9 ± 2.3 | 5.7 ± 0.2 | 8.2 ± 0.3 | 64.3 ± 6.4 |
COMPRESS=LERC, MAX_Z_ERROR=0 | 335 ± 26 | 62 ± 5 | 67.2 ± 4.9 | 6.4 ± 0.3 | 8.1 ± 0.6 | 52.4 ± 6.4 |
COMPRESS=LZMA, LEVEL=1 | 334 ± 24 | 62 ± 4 | 119.7 ± 4.5 | 17.0 ± 0.4 | 4.5 ± 0.2 | 19.6 ± 1.1 |
COMPRESS=ZSTD, PREDICTOR=YES, LEVEL=1 | 333 ± 27 | 62 ± 5 | 62.7 ± 3.0 | 4.7 ± 0.2 | 8.6 ± 0.4 | 71.3 ± 8.2 |
COMPRESS=LERC_ZSTD, LEVEL=1 | 332 ± 27 | 62 ± 5 | 65.4 ± 3.3 | 6.4 ± 0.3 | 8.3 ± 0.4 | 52.2 ± 6.4 |
COMPRESS=LERC_ZSTD, LEVEL=9 | 332 ± 27 | 62 ± 5 | 68.4 ± 3.8 | 6.4 ± 0.3 | 7.9 ± 0.4 | 52.3 ± 6.3 |
COMPRESS=LERC_ZSTD, LEVEL=22 | 332 ± 27 | 62 ± 5 | 90.1 ± 3.7 | 6.5 ± 0.3 | 6.0 ± 0.2 | 51.4 ± 6.3 |
COMPRESS=LERC_DEFLATE, LEVEL=1 | 332 ± 27 | 62 ± 5 | 69.1 ± 6.8 | 6.6 ± 0.3 | 7.9 ± 0.7 | 50.4 ± 6.6 |
COMPRESS=LERC_DEFLATE, LEVEL=6 | 331 ± 27 | 62 ± 5 | 71.4 ± 6.2 | 6.6 ± 0.3 | 7.6 ± 0.6 | 50.2 ± 6.5 |
COMPRESS=LERC_DEFLATE, LEVEL=9 | 331 ± 27 | 61 ± 5 | 74.7 ± 3.4 | 6.7 ± 0.3 | 7.2 ± 0.3 | 49.7 ± 6.5 |
COMPRESS=DEFLATE, PREDICTOR=YES, LEVEL=1 | 321 ± 20 | 60 ± 4 | 63.4 ± 1.7 | 5.3 ± 0.2 | 8.5 ± 0.2 | 60.6 ± 6.3 |
COMPRESS=DEFLATE, PREDICTOR=YES, LEVEL=6 | 320 ± 21 | 59 ± 4 | 67.9 ± 1.8 | 5.3 ± 0.2 | 7.9 ± 0.2 | 60.9 ± 6.1 |
COMPRESS=ZSTD, PREDICTOR=YES, LEVEL=9 | 318 ± 24 | 59 ± 4 | 73.1 ± 4.4 | 4.9 ± 0.2 | 7.4 ± 0.4 | 64.6 ± 7.0 |
COMPRESS=LZMA, LEVEL=9 | 316 ± 23 | 59 ± 4 | 185.6 ± 3.5 | 17.3 ± 0.7 | 2.9 ± 0.1 | 18.3 ± 0.6 |
COMPRESS=DEFLATE, PREDICTOR=YES, LEVEL=9 | 313 ± 19 | 58 ± 4 | 85.8 ± 2.4 | 5.3 ± 0.2 | 6.3 ± 0.2 | 59.6 ± 5.9 |
COMPRESS=ZSTD, PREDICTOR=YES, LEVEL=22 | 300 ± 15 | 56 ± 3 | 310.4 ± 4.8 | 5.1 ± 0.2 | 1.7 ± 0.0 | 59.1 ± 4.7 |
COMPRESS=WEBP, QUALITY=100 | 224 ± 17 | 42 ± 3 | 218.0 ± 16.0 | 6.3 ± 0.2 | 2.5 ± 0.2 | 35.7 ± 3.6 |
COMPRESS=WEBP, QUALITY=100, OVERVIEW_QUALITY=75 | 212 ± 15 | 39 ± 3 | 222.4 ± 20.9 | 6.3 ± 0.2 | 2.4 ± 0.2 | 33.9 ± 3.4 |
COMPRESS=WEBP, QUALITY=75 | 89 ± 12 | 17 ± 2 | 105.9 ± 5.2 | 6.3 ± 0.1 | 5.1 ± 0.3 | 14.1 ± 1.9 |
Source: Original images were five uncompressed Orthophotos (2x2km) from LGLN. Original images were stored as uncompressed COGs (size: 539 ± 0 MB). | ||||||
1 WEBP compression with QUALITY < 100 implies lossy compression, all other tested algorithms are lossless compression |
Multi-threaded (GDAL_NUM_THREADS=32
, GDAL_CacheMAX=8000
)
Comparison of Compression Performances | ||||||
Size and processing time (mean ± standard deviation) depending on compression settings | ||||||
Settings1 |
Size
|
Time
|
Speed
|
|||
---|---|---|---|---|---|---|
Absolute (MB) | Relative (%) | Write (s) | Read (s) | Write (MB/s) | Read (MB/s) | |
COMPRESS=NONE | 539 ± 0 | 100 ± 0 | 65.0 ± 1.9 | 4.2 ± 0.2 | 8.3 ± 0.2 | 128.8 ± 5.1 |
COMPRESS=LZW, PREDICTOR=NO | 512 ± 24 | 95 ± 4 | 61.7 ± 3.5 | 4.2 ± 0.2 | 8.8 ± 0.5 | 122.4 ± 11.4 |
COMPRESS=ZSTD, PREDICTOR=NO, LEVEL=1 | 429 ± 6 | 80 ± 1 | 61.9 ± 4.4 | 4.2 ± 0.1 | 8.7 ± 0.6 | 101.8 ± 3.1 |
COMPRESS=ZSTD, PREDICTOR=NO, LEVEL=9 | 408 ± 20 | 76 ± 4 | 63.5 ± 4.9 | 4.2 ± 0.2 | 8.5 ± 0.7 | 97.3 ± 9.4 |
COMPRESS=DEFLATE, PREDICTOR=NO, LEVEL=1 | 407 ± 18 | 76 ± 3 | 61.3 ± 3.4 | 4.1 ± 0.2 | 8.8 ± 0.5 | 99.5 ± 9.6 |
COMPRESS=DEFLATE, PREDICTOR=NO, LEVEL=6 | 402 ± 20 | 75 ± 4 | 62.9 ± 5.2 | 4.1 ± 0.2 | 8.6 ± 0.7 | 97.5 ± 9.1 |
COMPRESS=DEFLATE, PREDICTOR=NO, LEVEL=9 | 390 ± 22 | 72 ± 4 | 62.5 ± 4.2 | 4.2 ± 0.2 | 8.7 ± 0.6 | 93.7 ± 8.4 |
COMPRESS=ZSTD, PREDICTOR=NO, LEVEL=22 | 378 ± 26 | 70 ± 5 | 75.2 ± 7.8 | 4.3 ± 0.2 | 7.2 ± 0.7 | 87.4 ± 10.3 |
COMPRESS=LZW, PREDICTOR=YES | 368 ± 26 | 68 ± 5 | 61.8 ± 2.6 | 4.2 ± 0.2 | 8.7 ± 0.4 | 88.4 ± 10.1 |
COMPRESS=LERC, MAX_Z_ERROR=0 | 335 ± 26 | 62 ± 5 | 63.0 ± 3.9 | 4.3 ± 0.2 | 8.6 ± 0.6 | 77.7 ± 9.4 |
COMPRESS=LZMA, LEVEL=1 | 334 ± 24 | 62 ± 4 | 63.3 ± 6.3 | 5.6 ± 0.1 | 8.6 ± 0.9 | 59.8 ± 5.4 |
COMPRESS=ZSTD, PREDICTOR=YES, LEVEL=1 | 333 ± 27 | 62 ± 5 | 69.7 ± 20.8 | 4.1 ± 0.2 | 8.2 ± 1.8 | 81.3 ± 10.5 |
COMPRESS=LERC_ZSTD, LEVEL=1 | 332 ± 27 | 62 ± 5 | 61.6 ± 4.6 | 4.4 ± 0.2 | 8.8 ± 0.7 | 76.0 ± 10.0 |
COMPRESS=LERC_ZSTD, LEVEL=9 | 332 ± 27 | 62 ± 5 | 62.9 ± 3.5 | 4.4 ± 0.2 | 8.6 ± 0.5 | 76.0 ± 9.8 |
COMPRESS=LERC_ZSTD, LEVEL=22 | 332 ± 27 | 62 ± 5 | 63.9 ± 4.0 | 4.4 ± 0.2 | 8.5 ± 0.5 | 75.8 ± 10.6 |
COMPRESS=LERC_DEFLATE, LEVEL=1 | 332 ± 27 | 62 ± 5 | 66.1 ± 8.3 | 4.4 ± 0.2 | 8.3 ± 1.0 | 75.2 ± 9.8 |
COMPRESS=LERC_DEFLATE, LEVEL=6 | 331 ± 27 | 62 ± 5 | 64.6 ± 2.9 | 4.4 ± 0.2 | 8.4 ± 0.4 | 75.2 ± 9.5 |
COMPRESS=LERC_DEFLATE, LEVEL=9 | 331 ± 27 | 61 ± 5 | 63.0 ± 5.7 | 4.5 ± 0.1 | 8.6 ± 0.8 | 74.5 ± 8.4 |
COMPRESS=DEFLATE, PREDICTOR=YES, LEVEL=1 | 321 ± 20 | 60 ± 4 | 61.2 ± 3.1 | 4.1 ± 0.2 | 8.8 ± 0.4 | 78.3 ± 9.5 |
COMPRESS=DEFLATE, PREDICTOR=YES, LEVEL=6 | 320 ± 21 | 59 ± 4 | 62.4 ± 4.3 | 4.1 ± 0.2 | 8.7 ± 0.6 | 77.6 ± 9.6 |
COMPRESS=ZSTD, PREDICTOR=YES, LEVEL=9 | 318 ± 24 | 59 ± 4 | 61.0 ± 3.7 | 4.2 ± 0.2 | 8.9 ± 0.6 | 76.1 ± 10.0 |
COMPRESS=LZMA, LEVEL=9 | 316 ± 23 | 59 ± 4 | 71.7 ± 20.5 | 5.7 ± 0.1 | 7.9 ± 1.7 | 55.9 ± 4.6 |
COMPRESS=DEFLATE, PREDICTOR=YES, LEVEL=9 | 313 ± 19 | 58 ± 4 | 61.9 ± 3.7 | 4.1 ± 0.2 | 8.7 ± 0.5 | 75.9 ± 8.1 |
COMPRESS=ZSTD, PREDICTOR=YES, LEVEL=22 | 300 ± 15 | 56 ± 3 | 74.2 ± 4.0 | 4.4 ± 0.1 | 7.3 ± 0.4 | 68.9 ± 4.9 |
COMPRESS=WEBP, QUALITY=100 | 224 ± 17 | 42 ± 3 | 66.9 ± 3.8 | 4.3 ± 0.2 | 8.1 ± 0.4 | 52.5 ± 6.6 |
COMPRESS=WEBP, QUALITY=100, OVERVIEW_QUALITY=75 | 212 ± 15 | 39 ± 3 | 64.1 ± 5.9 | 4.3 ± 0.2 | 8.5 ± 0.8 | 49.7 ± 6.2 |
COMPRESS=WEBP, QUALITY=75 | 89 ± 12 | 17 ± 2 | 62.7 ± 3.3 | 4.4 ± 0.1 | 8.6 ± 0.5 | 20.5 ± 3.0 |
Source: Original images were five uncompressed Orthophotos (2x2km) from LGLN. Original images were stored as uncompressed COGs (size: 539 ± 0 MB). | ||||||
1 WEBP compression with QUALITY < 100 implies lossy compression, all other tested algorithms are lossless compression |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Results for Orthophotos