Last active
September 5, 2025 23:34
-
Star
(1,293)
You must be signed in to star a gist -
Fork
(388)
You must be signed in to fork a gist
-
-
Save willccbb/4676755236bb08cab5f4e54a0475d6fb to your computer and use it in GitHub Desktop.
GRPO Llama-1B
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# train_grpo.py | |
# | |
# See https://github.com/willccbb/verifiers for ongoing developments | |
# | |
""" | |
citation: | |
@misc{brown2025grpodemo, | |
title={Granular Format Rewards for Eliciting Mathematical Reasoning Capabilities in Small Language Models}, | |
author={Brown, William}, | |
howpublished={\url{https://gist.github.com/willccbb/4676755236bb08cab5f4e54a0475d6fb}}, | |
date = {2025-01-25}, | |
note = {GitHub Gist} | |
} | |
""" | |
import re | |
import torch | |
from datasets import load_dataset, Dataset | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from peft import LoraConfig | |
from trl import GRPOConfig, GRPOTrainer | |
# Load and prep dataset | |
SYSTEM_PROMPT = """ | |
Respond in the following format: | |
<reasoning> | |
... | |
</reasoning> | |
<answer> | |
... | |
</answer> | |
""" | |
XML_COT_FORMAT = """\ | |
<reasoning> | |
{reasoning} | |
</reasoning> | |
<answer> | |
{answer} | |
</answer> | |
""" | |
def extract_xml_answer(text: str) -> str: | |
answer = text.split("<answer>")[-1] | |
answer = answer.split("</answer>")[0] | |
return answer.strip() | |
def extract_hash_answer(text: str) -> str | None: | |
if "####" not in text: | |
return None | |
return text.split("####")[1].strip().replace(",", "").replace("$", "") | |
# uncomment middle messages for 1-shot prompting | |
def get_gsm8k_questions(split = "train") -> Dataset: | |
data = load_dataset('openai/gsm8k', 'main')[split] # type: ignore | |
data = data.map(lambda x: { # type: ignore | |
'prompt': [ | |
{'role': 'system', 'content': SYSTEM_PROMPT}, | |
#{'role': 'user', 'content': 'What is the largest single-digit prime number?'}, | |
#{'role': 'assistant', 'content': XML_COT_FORMAT.format( | |
# reasoning="9 is divisble by 3 and 8 is divisible by 2, but 7 is prime.", | |
# answer="7" | |
#)}, | |
{'role': 'user', 'content': x['question']} | |
], | |
'answer': extract_hash_answer(x['answer']) | |
}) # type: ignore | |
return data # type: ignore | |
dataset = get_gsm8k_questions() | |
# Reward functions | |
def correctness_reward_func(prompts, completions, answer, **kwargs) -> list[float]: | |
responses = [completion[0]['content'] for completion in completions] | |
q = prompts[0][-1]['content'] | |
extracted_responses = [extract_xml_answer(r) for r in responses] | |
print('-'*20, f"Question:\n{q}", f"\nAnswer:\n{answer[0]}", f"\nResponse:\n{responses[0]}", f"\nExtracted:\n{extracted_responses[0]}") | |
return [2.0 if r == a else 0.0 for r, a in zip(extracted_responses, answer)] | |
def int_reward_func(completions, **kwargs) -> list[float]: | |
responses = [completion[0]['content'] for completion in completions] | |
extracted_responses = [extract_xml_answer(r) for r in responses] | |
return [0.5 if r.isdigit() else 0.0 for r in extracted_responses] | |
def strict_format_reward_func(completions, **kwargs) -> list[float]: | |
"""Reward function that checks if the completion has a specific format.""" | |
pattern = r"^<reasoning>\n.*?\n</reasoning>\n<answer>\n.*?\n</answer>\n$" | |
responses = [completion[0]["content"] for completion in completions] | |
matches = [re.match(pattern, r, flags=re.DOTALL) for r in responses] | |
return [0.5 if match else 0.0 for match in matches] | |
def soft_format_reward_func(completions, **kwargs) -> list[float]: | |
"""Reward function that checks if the completion has a specific format.""" | |
pattern = r"<reasoning>.*?</reasoning>\s*<answer>.*?</answer>" | |
responses = [completion[0]["content"] for completion in completions] | |
matches = [re.match(pattern, r, flags=re.DOTALL) for r in responses] | |
return [0.5 if match else 0.0 for match in matches] | |
def count_xml(text) -> float: | |
count = 0.0 | |
if text.count("<reasoning>\n") == 1: | |
count += 0.125 | |
if text.count("\n</reasoning>\n") == 1: | |
count += 0.125 | |
if text.count("\n<answer>\n") == 1: | |
count += 0.125 | |
count -= len(text.split("\n</answer>\n")[-1])*0.001 | |
if text.count("\n</answer>") == 1: | |
count += 0.125 | |
count -= (len(text.split("\n</answer>")[-1]) - 1)*0.001 | |
return count | |
def xmlcount_reward_func(completions, **kwargs) -> list[float]: | |
contents = [completion[0]["content"] for completion in completions] | |
return [count_xml(c) for c in contents] | |
#model_name = "meta-llama/Llama-3.2-1B-Instruct" | |
model_name = "Qwen/Qwen2.5-1.5B-Instruct" | |
if "Llama" in model_name: | |
output_dir = "outputs/Llama-1B-GRPO" | |
run_name = "Llama-1B-GRPO-gsm8k" | |
else: | |
output_dir="outputs/Qwen-1.5B-GRPO" | |
run_name="Qwen-1.5B-GRPO-gsm8k" | |
training_args = GRPOConfig( | |
output_dir=output_dir, | |
run_name=run_name, | |
learning_rate=5e-6, | |
adam_beta1 = 0.9, | |
adam_beta2 = 0.99, | |
weight_decay = 0.1, | |
warmup_ratio = 0.1, | |
lr_scheduler_type='cosine', | |
logging_steps=1, | |
bf16=True, | |
per_device_train_batch_size=1, | |
gradient_accumulation_steps=4, | |
num_generations=16, | |
max_prompt_length=256, | |
max_completion_length=786, | |
num_train_epochs=1, | |
save_steps=100, | |
max_grad_norm=0.1, | |
report_to="wandb", | |
log_on_each_node=False, | |
) | |
peft_config = LoraConfig( | |
r=16, | |
lora_alpha=64, | |
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "down_proj", "gate_proj"], | |
task_type="CAUSAL_LM", | |
lora_dropout=0.05, | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.bfloat16, | |
attn_implementation="flash_attention_2", | |
device_map=None | |
).to("cuda") | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
tokenizer.pad_token = tokenizer.eos_token | |
# use peft at your own risk; not working for me with multi-GPU training | |
trainer = GRPOTrainer( | |
model=model, | |
processing_class=tokenizer, | |
reward_funcs=[ | |
xmlcount_reward_func, | |
soft_format_reward_func, | |
strict_format_reward_func, | |
int_reward_func, | |
correctness_reward_func], | |
args=training_args, | |
train_dataset=dataset, | |
#peft_config=peft_config | |
) | |
trainer.train() |
Hey has anyone been able to get the llama model to work? I ask because i tried running the llama model but it would not format the answer correctly (which is an issue given how the reward functions are computed). I was able to get things to work better by running the 3B parameter instruct model--but I was curious about whether things should also work for the 1B parameter model.
I, admittedly, only trained the 1B parameter model for ~30 steps (again all zero rewards for all 30 steps) before switching to the 3B parameter model.
Also nice work Will!
you guys are some serious prompt wizards 🪄🪄 and we need you sharing the knowledge at God Tier Prompts!
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Are you using Qwen-2.5-0.5B-Instruct as your base model? I noticed in Table 10 of the Qwen2.5-technical-report that Qwen-2.5-0.5B-Instruct scores 49.6 on GSM8K, and you mentioned your trained model achieved ~51%. From this perspective, it seems there wasn't a significant performance improvement. Please correct me if my assessment is wrong.
To be honest, I tried using Qwen2.5-1.5B-Instruct as the base model to train Qwen-1.5B-GRPO, and its performance on GSM8K was
73.24
, which is almost identical to what's reported in the Qwen2.5 technical report. However, I did notice that the training brought format-related benefits. At the beginning of training, the model struggled to follow the output format required in the SYSTEM_PROMPT (<reasoning>...</reasoning><answer>...</answer>
), but after training, the model could follow this format almost perfectly. This indicates that the training did bring certain benefits—but in my experiment, the improvements were primarily in formatting rather than solving ability. Do you have any insights on this?