Created
February 26, 2025 08:02
-
-
Save wmvanvliet/7ba2d79d3574bc35abde63a1f59992c3 to your computer and use it in GitHub Desktop.
Comparing pyrasa with neurodsp on their IRASA implementations.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import neurodsp | |
import neurodsp.aperiodic | |
import neurodsp.plts | |
import neurodsp.sim | |
import neurodsp.spectral | |
import numpy as np | |
from pyrasa.irasa import irasa | |
n_seconds = 10 | |
fs = 500 # sampling rate in Hz | |
# Parameters of the simulated components | |
cf = 10 # frequency of the oscillatory component | |
exp = -2 # exponent of the power-law | |
print(f"simulated exponent: {exp:1.2f}") | |
# Components for the simulated signal | |
components = dict(sim_oscillation=dict(freq=cf), sim_powerlaw=dict(exponent=exp)) | |
# Frequency range of interest | |
f_range = (1, 40) | |
# Create the stimulated time series | |
sig = neurodsp.sim.sim_combined(n_seconds, fs, components) | |
time = np.arange(len(sig)) / fs | |
# Power spectrum | |
freqs, psd = neurodsp.spectral.compute_spectrum(sig, fs, nperseg=4 * fs) | |
freqs, psd = neurodsp.spectral.trim_spectrum(freqs, psd, f_range) | |
neurodsp.plts.plot_power_spectra(freqs, psd, title="Original spectrum") | |
# Compute the IRASA decomposition of the data | |
freqs, psd_aperiodic, psd_periodic = neurodsp.aperiodic.compute_irasa( | |
sig, fs, f_range=f_range, thresh=1 | |
) | |
neurodsp.plts.plot_power_spectra( | |
freqs, | |
[psd_aperiodic, psd_periodic], | |
labels=["aperiodic", "periodic"], | |
title="neurodsp IRASA components", | |
) | |
# Fit the aperiodic component of the IRASA results | |
intercept, fit_sl = neurodsp.aperiodic.fit_irasa(freqs, psd_aperiodic) | |
print(f"neurodsp computed exponent: {fit_sl:1.2f}") | |
irasa_out = irasa( | |
sig, | |
fs=fs, | |
band=f_range, | |
psd_kwargs=dict(nperseg=4 * fs, noverlap=4 * fs // 8), | |
hset_info=(1.1, 1.9, 0.05), | |
) | |
neurodsp.plts.plot_power_spectra( | |
irasa_out.freqs, | |
[irasa_out.aperiodic[0], irasa_out.periodic[0]], | |
labels=["aperiodic", "periodic"], | |
title="pyrasa IRASA components", | |
) | |
aperiodic_fit = irasa_out.fit_aperiodic_model() | |
fit_sl_new = aperiodic_fit.aperiodic_params.at[0, "Exponent"] | |
print(f"pyrasa computed exponent: {fit_sl:1.2f}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment