Created
September 14, 2021 19:55
-
-
Save wrathematics/2dc3b83df10901bcf22a444c8f4353c3 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
pvt.powscor_mod = function(x, alpha, lambda, w) | |
{ | |
#### determine correlation shrinkage intensity | |
if (missing(lambda)) | |
{ | |
if (comm.rank() == 0) | |
lambda = corpcor:::estimate.lambda(x, w, verbose=FALSE) | |
else | |
lambda = NULL | |
lambda = pbdMPI::bcast(lambda, rank.source=0) | |
lambda.estimated=TRUE | |
} | |
else | |
{ | |
if (lambda < 0) lambda = 0 | |
if (lambda > 1) lambda = 1 | |
lambda.estimated=FALSE | |
} | |
if (comm.rank() == 0) | |
{ | |
n = nrow(x) | |
w = corpcor:::pvt.check.w(w, n) | |
xs = corpcor:::wt.scale(x, w, center=TRUE, scale=TRUE) # standardize data matrix | |
# bias correction factor | |
h1 = 1/(1-sum(w*w)) # for w=1/n this equals the usual h1=n/(n-1) | |
p = ncol(xs) | |
} | |
if (lambda == 1 | alpha == 0) # result in both cases is the identity matrix | |
{ | |
# powr = diag(p) # return identity matrix | |
if (comm.rank() != 0) | |
p = NULL | |
p = pbdMPI::bcast(p, rank.source=0) | |
powr = diag(1.0, p, p, type="ddmatrix") | |
} | |
else | |
{ | |
# unbiased empirical estimator | |
# for w=1/n the following would simplify to: r = 1/(n-1)*crossprod(xs) | |
#r0 = h1 * t(xs) %*% diag(w) %*% xs | |
#r0 = h1 * t(xs) %*% sweep(xs, 1, w, "*") # sweep requires less memory | |
if (comm.rank() == 0) | |
xsw = sweep(xs, 1, sqrt(w), "*") | |
else | |
xsw = h1 = NULL | |
h1 = pbdMPI::bcast(h1, rank.source=0) | |
d_xsw = as.ddmatrix(xsw) | |
r0 = h1 * crossprod(d_xsw) | |
# shrink off-diagonal elements | |
powr = (1-lambda)*r0 | |
diag(powr) = 1 | |
} | |
powr | |
} | |
cor_shrink = function(x, lambda, w) | |
{ | |
# matrix power of shrinkage correlation | |
powr = pvt.powscor_mod(x=x, alpha=1, lambda=lambda, w=w) | |
powr | |
} | |
ev_cor_shrink = function(x, lambda, w) | |
{ | |
co_mat = cor_shrink(x=x, lambda=lambda, w=w) | |
ev = eigen(co_mat, symmetric=TRUE, only.values=TRUE)$values | |
ev | |
} | |
suppressMessages(library(corpcor)) | |
suppressMessages(library(pbdDMAT)) | |
init.grid() | |
.pbd_env$BLDIM = c(16, 16) | |
.pbd_env$ICTXT = 0 | |
comm.set.seed(1234, diff=TRUE) | |
m = 100 | |
n = 1000 | |
if (comm.rank() == 0){ | |
x = matrix(rnorm(m*n), m, n) | |
} else { | |
x = NULL | |
} | |
ev = ev_cor_shrink(x) | |
comm.print(ev) | |
finalize() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment