# add repo
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
# Update & install
sudo apt update
sudo apt install -y nvidia-docker2
# Restart Docker
sudo systemctl restart docker
docker run --rm --gpus all nvidia/cuda:11.8.0-base-ubuntu22.04 nvidia-smi
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.85.12 Driver Version: 525.85.12 CUDA Version: 12.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
+-------------------------------+----------------------+----------------------+
docker run -it -p 7860:7860 --platform=linux/amd64 --gpus all \
registry.hf.space/jeffreyxiang-trellis:latest python app.py
After the Run step above, copy the /home/user folder to our Host Computer
docker cp replace_this_container_name:/home/user ./container_home_backup
Stop Container that was previously running
docker stop replace_this_container_name
Then rerun it by including the volume folder /home/user that we copied earlier
docker run -it -p 7860:7860 --gpus all \
-v $(pwd)/container_home_backup:/home/user \
registry.hf.space/jeffreyxiang-trellis:latest python app.py