Created
April 4, 2015 11:28
Revisions
-
xccds created this gist
Apr 4, 2015 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,125 @@ # 读取 df = read.csv('2014data.csv',stringsAsFactors =FALSE) df1 = df[4:53] df2 = df[54:57] # 整理 library(plyr) df1_names = names(df1) names(df1) = paste0('x',1:ncol(df1)) df2_names = names(df2) names(df2) = paste0('y',1:ncol(df2)) map_func = function(x){ temp = mapvalues(x, from = c("强烈同意","同意","反对","强烈反对"), to = c(2,1,-1,-2)) return(as.numeric(temp)) } df1_1 = colwise(map_func)(df1) df2_2 = df2 df2_2$y1 = ifelse(df2$y1=='F',1,0) df2_2$y2 = 2015-df2_2$y2 df2_2$y2 = cut(df2_2$y2,breaks=c(0,18,22,25,30,35,40,50,60,70,120), labels=1:10) df2_2$y2 = as.numeric(df2_2$y2) df2_2$y3 = mapvalues(df2$y3, from = c("0-25k","25k-50k","50k-75k","75k-100k","100k-150k","150k-300k","300k+"), to = 1:7) df2_2$y3 = as.numeric(df2_2$y3) df2_2$y4 = mapvalues(df2$y4, from = c("初中及以下","高中","大学","研究生及以上"), to = 1:4) df2_2$y4 = as.numeric(df2_2$y4) # 去除有问题数据 df3 = cbind(df1_1,df2_2) df4 = df3[complete.cases(df3),] df5 = subset(df5, !(y2==10)) df5 = subset(df5, !(y2==1&y4==4)) df5 = subset(df5, !(y2==1&y3>5)) im_func = function(x,y){ e=1e-8 px = matrix(prop.table(table(x))) py = matrix(prop.table(table(y))) pxy = matrix(prop.table(table(x,y)),ncol=nrow(py)) im = pxy*(log2(pxy+e) - log2(e+px %*% t(py))) nomi = sum(im) denomi = -0.5*(sum(px*log2(px+e))+sum(py*log2(py+e))) return(nomi/denomi) } m = ncol(df5) result = matrix(nrow=m,ncol=m) for (i in 1:m){ for (j in 1:i){ result[i,j] = im_func(df5[[i]],df5[[j]]) } } diag(result) = 0 # 哪些问题最相关 max_v=max(result[1:50,1:50],na.rm = T) which(result==max_v,arr.ind = T) df1_names[c(3,6)] table(df5$x3,df5$x6) # 学历和哪个问题最相关 order(result[54,],decreasing = T) df1_names[41] table(df5$x41,df5$y4) # 年龄 和那个问题有关 order(result[52,],decreasing = T) df1_names[35] table(df5$x30,df5$y2) # 收入和那个问题有关 order(result[53,],decreasing = T) df1_names[35] table(df5$x35,df5$y3) # 性别和那个问题有关 order(result[51,],decreasing = T) df1_names[30] table(df5$x30,df5$y1) # 模型 library(gbm) model = gbm(y3~.,data = df5, distribution = "multinomial", n.trees = 200, shrinkage = 0.01, train.fraction = 0.8, cv.folds=5) pred = predict(model,type="response") pred = matrix(pred[,,1],ncol=7) pred_y = apply(pred,1,which.max) coef = relative.influence(model) sort(coef[coef>0]) df1_names[16] table(df5$x16,df5$y3) df1_names[41] table(df5$x41,df5$y3) df1_names[12] table(df5$x12,df5$y3) # # 政治 # df5$poli = rowMeans(df5[,1:20]) # # 经济 # df5$econ = rowMeans(df5[,21:40]) # # 文化 # df5$cult = rowMeans(df5[,41:50]) # # # cluster # library(fpc) # pka <- kmeansruns(df5[,c('poli','econ','cult')],krange=2:6,critout=TRUE,runs=2,criterion="asw")