Created
February 1, 2024 03:42
-
-
Save xmnlab/edbca465fc6151e87ac5aaa6b0b8837d to your computer and use it in GitHub Desktop.
RIS Samples
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
TY - JOUR | |
M3 - Erratum | |
Y1 - 2023 | |
VL - 14 | |
IS - 1 | |
SN - 2041-1723 | |
JF - Nature Communications | |
JO - Nat. Commun. | |
UR - https://www.embase.com/search/results?subaction=viewrecord&id=L2021258467&from=export | |
U2 - L2021258467 | |
C5 - 36702828 | |
DB - Embase | |
DB - Medline | |
U4 - 2023-01-31 | |
L2 - http://dx.doi.org/10.1038/s41467-023-36188-7 | |
DO - 10.1038/s41467-023-36188-7 | |
LK - https://slsp-unige.primo.exlibrisgroup.com/openurl/41SLSP_UGE/41SLSP_UGE:VU1?sid=EMBASE&sid=EMBASE&issn=20411723&id=doi:10.1038%2Fs41467-023-36188-7&atitle=Author+Correction%3A+Federated+learning+enables+big+data+for+rare+cancer+boundary+detection+%28Nature+Communications%2C+%282022%29%2C+13%2C+1%2C+%287346%29%2C+10.1038%2Fs41467-022-33407-5%29&stitle=Nat.+Commun.&title=Nature+Communications&volume=14&issue=1&spage=&epage=&aulast=Pati&aufirst=Sarthak&auinit=S.&aufull=Pati+S.&coden=&isbn=&pages=-&date=2023&auinit1=S&auinitm= | |
A1 - Pati, S. | |
A1 - Baid, U. | |
A1 - Edwards, B. | |
A1 - Sheller, M. | |
A1 - Wang, S.-H. | |
A1 - Reina, G.A. | |
A1 - Foley, P. | |
A1 - Gruzdev, A. | |
A1 - Karkada, D. | |
A1 - Davatzikos, C. | |
A1 - Sako, C. | |
A1 - Ghodasara, S. | |
A1 - Bilello, M. | |
A1 - Mohan, S. | |
A1 - Vollmuth, P. | |
A1 - Brugnara, G. | |
A1 - Preetha, C.J. | |
A1 - Sahm, F. | |
A1 - Maier-Hein, K. | |
A1 - Zenk, M. | |
A1 - Bendszus, M. | |
A1 - Wick, W. | |
A1 - Calabrese, E. | |
A1 - Rudie, J. | |
A1 - Villanueva-Meyer, J. | |
A1 - Cha, S. | |
A1 - Ingalhalikar, M. | |
A1 - Jadhav, M. | |
A1 - Pandey, U. | |
A1 - Saini, J. | |
A1 - Garrett, J. | |
A1 - Larson, M. | |
A1 - Jeraj, R. | |
A1 - Currie, S. | |
A1 - Frood, R. | |
A1 - Fatania, K. | |
A1 - Huang, R.Y. | |
A1 - Chang, K. | |
A1 - Balaña, C. | |
A1 - Capellades, J. | |
A1 - Puig, J. | |
A1 - Trenkler, J. | |
A1 - Pichler, J. | |
A1 - Necker, G. | |
A1 - Haunschmidt, A. | |
A1 - Meckel, S. | |
A1 - Shukla, G. | |
A1 - Liem, S. | |
A1 - Alexander, G.S. | |
A1 - Lombardo, J. | |
A1 - Palmer, J.D. | |
A1 - Flanders, A.E. | |
A1 - Dicker, A.P. | |
A1 - Sair, H.I. | |
A1 - Jones, C.K. | |
A1 - Venkataraman, A. | |
A1 - Jiang, M. | |
A1 - So, T.Y. | |
A1 - Chen, C. | |
A1 - Heng, P.A. | |
A1 - Dou, Q. | |
A1 - Kozubek, M. | |
A1 - Lux, F. | |
A1 - Michálek, J. | |
A1 - Matula, P. | |
A1 - Keřkovský, M. | |
A1 - Kopřivová, T. | |
A1 - Dostál, M. | |
A1 - Vybíhal, V. | |
A1 - Vogelbaum, M.A. | |
A1 - Mitchell, J.R. | |
A1 - Farinhas, J. | |
A1 - Maldjian, J.A. | |
A1 - Yogananda, C.G.B. | |
A1 - Pinho, M.C. | |
A1 - Reddy, D. | |
A1 - Holcomb, J. | |
A1 - Wagner, B.C. | |
A1 - Ellingson, B.M. | |
A1 - Cloughesy, T.F. | |
A1 - Raymond, C. | |
A1 - Oughourlian, T. | |
A1 - Hagiwara, A. | |
A1 - Wang, C. | |
A1 - To, M.-S. | |
A1 - Bhardwaj, S. | |
A1 - Chong, C. | |
A1 - Agzarian, M. | |
A1 - Falcão, A.X. | |
A1 - Martins, S.B. | |
A1 - Teixeira, B.C.A. | |
A1 - Sprenger, F. | |
A1 - Menotti, D. | |
A1 - Lucio, D.R. | |
A1 - LaMontagne, P. | |
A1 - Marcus, D. | |
A1 - Wiestler, B. | |
A1 - Kofler, F. | |
A1 - Ezhov, I. | |
A1 - Metz, M. | |
A1 - Jain, R. | |
A1 - Lee, M. | |
A1 - Lui, Y.W. | |
A1 - McKinley, R. | |
A1 - Slotboom, J. | |
A1 - Radojewski, P. | |
A1 - Meier, R. | |
A1 - Wiest, R. | |
A1 - Murcia, D. | |
A1 - Fu, E. | |
A1 - Haas, R. | |
A1 - Thompson, J. | |
A1 - Ormond, D.R. | |
A1 - Badve, C. | |
A1 - Sloan, A.E. | |
A1 - Vadmal, V. | |
A1 - Waite, K. | |
A1 - Colen, R.R. | |
A1 - Pei, L. | |
A1 - Ak, M. | |
A1 - Srinivasan, A. | |
A1 - Bapuraj, J.R. | |
A1 - Rao, A. | |
A1 - Wang, N. | |
A1 - Yoshiaki, O. | |
A1 - Moritani, T. | |
A1 - Turk, S. | |
A1 - Lee, J. | |
A1 - Prabhudesai, S. | |
A1 - Morón, F. | |
A1 - Mandel, J. | |
A1 - Kamnitsas, K. | |
A1 - Glocker, B. | |
A1 - Dixon, L.V.M. | |
A1 - Williams, M. | |
A1 - Zampakis, P. | |
A1 - Panagiotopoulos, V. | |
A1 - Tsiganos, P. | |
A1 - Alexiou, S. | |
A1 - Haliassos, I. | |
A1 - Zacharaki, E.I. | |
A1 - Moustakas, K. | |
A1 - Kalogeropoulou, C. | |
A1 - Kardamakis, D.M. | |
A1 - Choi, Y.S. | |
A1 - Lee, S.-K. | |
A1 - Chang, J.H. | |
A1 - Ahn, S.S. | |
A1 - Luo, B. | |
A1 - Poisson, L. | |
A1 - Wen, N. | |
A1 - Tiwari, P. | |
A1 - Verma, R. | |
A1 - Bareja, R. | |
A1 - Yadav, I. | |
A1 - Chen, J. | |
A1 - Kumar, N. | |
A1 - Smits, M. | |
A1 - van der Voort, S.R. | |
A1 - Alafandi, A. | |
A1 - Incekara, F. | |
A1 - Wijnenga, M.M.J. | |
A1 - Kapsas, G. | |
A1 - Gahrmann, R. | |
A1 - Schouten, J.W. | |
A1 - Dubbink, H.J. | |
A1 - Vincent, A.J.P.E. | |
A1 - van den Bent, M.J. | |
A1 - French, P.J. | |
A1 - Klein, S. | |
A1 - Yuan, Y. | |
A1 - Sharma, S. | |
A1 - Tseng, T.-C. | |
A1 - Adabi, S. | |
A1 - Niclou, S.P. | |
A1 - Keunen, O. | |
A1 - Hau, A.-C. | |
A1 - Vallières, M. | |
A1 - Fortin, D. | |
A1 - Lepage, M. | |
A1 - Landman, B. | |
A1 - Ramadass, K. | |
A1 - Xu, K. | |
A1 - Chotai, S. | |
A1 - Chambless, L.B. | |
A1 - Mistry, A. | |
A1 - Thompson, R.C. | |
A1 - Gusev, Y. | |
A1 - Bhuvaneshwar, K. | |
A1 - Sayah, A. | |
A1 - Bencheqroun, C. | |
A1 - Belouali, A. | |
A1 - Madhavan, S. | |
A1 - Booth, T.C. | |
A1 - Chelliah, A. | |
A1 - Modat, M. | |
A1 - Shuaib, H. | |
A1 - Dragos, C. | |
A1 - Abayazeed, A. | |
A1 - Kolodziej, K. | |
A1 - Hill, M. | |
A1 - Abbassy, A. | |
A1 - Gamal, S. | |
A1 - Mekhaimar, M. | |
A1 - Qayati, M. | |
A1 - Reyes, M. | |
A1 - Park, J.E. | |
A1 - Yun, J. | |
A1 - Kim, H.S. | |
A1 - Mahajan, A. | |
A1 - Muzi, M. | |
A1 - Benson, S. | |
A1 - Beets-Tan, R.G.H. | |
A1 - Teuwen, J. | |
A1 - Herrera-Trujillo, A. | |
A1 - Trujillo, M. | |
A1 - Escobar, W. | |
A1 - Abello, A. | |
A1 - Bernal, J. | |
A1 - Gómez, J. | |
A1 - Choi, J. | |
A1 - Baek, S. | |
A1 - Kim, Y. | |
A1 - Ismael, H. | |
A1 - Allen, B. | |
A1 - Buatti, J.M. | |
A1 - Kotrotsou, A. | |
A1 - Li, H. | |
A1 - Weiss, T. | |
A1 - Weller, M. | |
A1 - Bink, A. | |
A1 - Pouymayou, B. | |
A1 - Shaykh, H.F. | |
A1 - Saltz, J. | |
A1 - Prasanna, P. | |
A1 - Shrestha, S. | |
A1 - Mani, K.M. | |
A1 - Payne, D. | |
A1 - Kurc, T. | |
A1 - Pelaez, E. | |
A1 - Franco-Maldonado, H. | |
A1 - Loayza, F. | |
A1 - Quevedo, S. | |
A1 - Guevara, P. | |
A1 - Torche, E. | |
A1 - Mendoza, C. | |
A1 - Vera, F. | |
A1 - Ríos, E. | |
A1 - López, E. | |
A1 - Velastin, S.A. | |
A1 - Ogbole, G. | |
A1 - Soneye, M. | |
A1 - Oyekunle, D. | |
A1 - Odafe-Oyibotha, O. | |
A1 - Osobu, B. | |
A1 - Shu’aibu, M. | |
A1 - Dorcas, A. | |
A1 - Dako, F. | |
A1 - Simpson, A.L. | |
A1 - Hamghalam, M. | |
A1 - Peoples, J.J. | |
A1 - Hu, R. | |
A1 - Tran, A. | |
A1 - Cutler, D. | |
A1 - Moraes, F.Y. | |
A1 - Boss, M.A. | |
A1 - Gimpel, J. | |
A1 - Veettil, D.K. | |
A1 - Schmidt, K. | |
A1 - Bialecki, B. | |
A1 - Marella, S. | |
A1 - Price, C. | |
A1 - Cimino, L. | |
A1 - Apgar, C. | |
A1 - Shah, P. | |
A1 - Menze, B. | |
A1 - Barnholtz-Sloan, J.S. | |
A1 - Martin, J. | |
A1 - Bakas, S. | |
M1 - (Pati S.; Baid U.; Davatzikos C.; Sako C.; Bilello M.; Mohan S.; Shukla G.; Bakas S., [email protected]) Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, United States | |
M1 - (Pati S.; Baid U.; Davatzikos C.; Sako C.; Ghodasara S.; Bilello M.; Mohan S.; Dako F.; Bakas S., [email protected]) Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States | |
M1 - (Pati S.; Baid U.; Bakas S., [email protected]) Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States | |
M1 - (Pati S.; Ezhov I.; Menze B.) Department of Informatics, Technical University of Munich, Bavaria, Munich, Germany | |
M1 - (Edwards B.; Sheller M.; Wang S.-H.; Reina G.A.; Foley P.; Gruzdev A.; Karkada D.; Shah P.; Martin J.) Intel Corporation, Santa Clara, CA, United States | |
M1 - (Vollmuth P.; Brugnara G.; Preetha C.J.; Bendszus M.) Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany | |
M1 - (Sahm F.; Wick W.) Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany | |
M1 - (Sahm F.) Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany | |
M1 - (Maier-Hein K.; Zenk M.) Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany | |
M1 - (Maier-Hein K.) Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany | |
M1 - (Wick W.) Neurology Clinic, Heidelberg University Hospital, Heidelberg, Germany | |
M1 - (Calabrese E.; Rudie J.; Villanueva-Meyer J.; Cha S.) Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States | |
M1 - (Ingalhalikar M.; Jadhav M.; Pandey U.) Symbiosis Center for Medical Image Analysis, Symbiosis International University, Maharashtra, Pune, India | |
M1 - (Saini J.) Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Karnataka, Bangalore, India | |
M1 - (Garrett J.; Larson M.; Jeraj R.) Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States | |
M1 - (Garrett J.; Jeraj R.) Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States | |
M1 - (Currie S.; Frood R.; Fatania K.) Leeds Teaching Hospitals Trust, Department of Radiology, Leeds, United Kingdom | |
M1 - (Huang R.Y.) Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States | |
M1 - (Chang K.) Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States | |
M1 - (Balaña C.) Catalan Institute of Oncology, Badalona, Spain | |
M1 - (Capellades J.) Consorci MAR Parc de Salut de Barcelona, Catalonia, Spain | |
M1 - (Puig J.) Department of Radiology (IDI), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain | |
M1 - (Trenkler J.; Necker G.; Haunschmidt A.; Meckel S.) Institute of Neuroradiology, Kepler University Hospital Linz, Neuromed Campus (NMC), Linz, Austria | |
M1 - (Pichler J.) Department of Neurooncology, Kepler University Hospital Linz, Neuromed Campus (NMC), Linz, Austria | |
M1 - (Meckel S.) Institute of Diagnostic and Interventional Neuroradiology, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany | |
M1 - (Shukla G.) Department of Radiation Oncology, Christiana Care Health System, Philadelphia, PA, United States | |
M1 - (Liem S.; Lombardo J.) Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States | |
M1 - (Alexander G.S.) Department of Radiation Oncology, University of Maryland, Baltimore, MD, United States | |
M1 - (Lombardo J.; Dicker A.P.) Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States | |
M1 - (Palmer J.D.) Department of Radiation Oncology, The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States | |
M1 - (Flanders A.E.) Department of Radiology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States | |
M1 - (Sair H.I.) The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States | |
M1 - (Sair H.I.; Jones C.K.) The Malone Center for Engineering in Healthcare, The Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States | |
M1 - (Venkataraman A.) Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States | |
M1 - (Jiang M.; So T.Y.; Chen C.; Heng P.A.; Dou Q.) The Chinese University of Hong Kong, Hong Kong | |
M1 - (Kozubek M.; Lux F.; Michálek J.; Matula P.) Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic | |
M1 - (Keřkovský M.; Kopřivová T.; Dostál M.) Department of Radiology and Nuclear Medicine, Faculty of Medicine, Masaryk University, Brno and University Hospital Brno, Brno, Czech Republic | |
M1 - (Dostál M.) Department of Biophysics, Faculty of Medicine, Masaryk University, Brno, Czech Republic | |
M1 - (Vybíhal V.) Department of Neurosurgery, Faculty of Medicine, Masaryk University, Brno, and University Hospital and Czech Republic, Brno, Czech Republic | |
M1 - (Vogelbaum M.A.) Department of Neuro Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States | |
M1 - (Mitchell J.R.; Kumar N.) University of Alberta, Edmonton, AB, Canada | |
M1 - (Mitchell J.R.; Verma R.; Kumar N.) Alberta Machine Intelligence Institute, Edmonton, AB, Canada | |
M1 - (Farinhas J.) Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States | |
M1 - (Maldjian J.A.; Yogananda C.G.B.; Pinho M.C.; Reddy D.; Holcomb J.; Wagner B.C.) University of Texas Southwestern Medical Center, Dallas, TX, United States | |
M1 - (Ellingson B.M.; Raymond C.; Oughourlian T.) UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States | |
M1 - (Ellingson B.M.; Cloughesy T.F.) UCLA Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States | |
M1 - (Oughourlian T.; Hagiwara A.; Wang C.) Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States | |
M1 - (To M.-S.; Bhardwaj S.) College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia | |
M1 - (To M.-S.) Division of Surgery and Perioperative Medicine, Flinders Medical Centre, Bedford Park, SA, Australia | |
M1 - (Chong C.; Agzarian M.) South Australia Medical Imaging, Flinders Medical Centre, Bedford Park, SA, Australia | |
M1 - (Agzarian M.; Mandel J.) Department of Neurology, Baylor College of Medicine, Houston, TX, United States | |
M1 - (Falcão A.X.) Institute of Computing, University of Campinas, São Paulo, Campinas, Brazil | |
M1 - (Martins S.B.) Federal Institute of São Paulo, São Paulo, Campinas, Brazil | |
M1 - (Teixeira B.C.A.) Instituto de Neurologia de Curitiba, Paraná, Curitiba, Brazil | |
M1 - (Teixeira B.C.A.; Sprenger F.) Department of Radiology, Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Paraná, Brazil | |
M1 - (Menotti D.; Lucio D.R.) Department of Informatics, Universidade Federal do Paraná, Curitiba, Paraná, Brazil | |
M1 - (LaMontagne P.; Marcus D.) Department of Radiology, Washington University in St. Louis, St. Louis, MO, United States | |
M1 - (Wiestler B.; Kofler F.; Metz M.) Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany | |
M1 - (Wiestler B.; Kofler F.; Ezhov I.) TranslaTUM (Zentralinstitut für translationale Krebsforschung der Technischen Universität München), Klinikum rechts der Isar, Munich, Germany | |
M1 - (Kofler F.; Ezhov I.) Image-Based Biomedical Modeling, Department of Informatics, Technical University of Munich, Munich, Germany | |
M1 - (Jain R.; Lee M.; Lui Y.W.) Department of Radiology, NYU Grossman School of Medicine, New York, NY, United States | |
M1 - (Jain R.) Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, United States | |
M1 - (McKinley R.; Slotboom J.; Radojewski P.; Meier R.; Wiest R.) Support Center for Advanced Neuroimaging, University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland | |
M1 - (Murcia D.; Fu E.; Haas R.; Thompson J.; Ormond D.R.) Department of Neurosurgery, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States | |
M1 - (Badve C.) Department of Radiology, University Hospitals Cleveland, Cleveland, OH, United States | |
M1 - (Sloan A.E.) Department of Neurological Surgery, University Hospitals-Seidman Cancer Center, Cleveland, OH, United States | |
M1 - (Sloan A.E.) Case Comprehensive Cancer Center, Cleveland, OH, United States | |
M1 - (Sloan A.E.; Vadmal V.) Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States | |
M1 - (Waite K.; Barnholtz-Sloan J.S.) National Cancer Institute, National Institute of Health, Division of Cancer Epidemiology and Genetics, Bethesda, MD, United States | |
M1 - (Colen R.R.; Ak M.) Department of Radiology, Neuroradiology Division, University of Pittsburgh, Pittsburgh, PA, United States | |
M1 - (Colen R.R.) Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, United States | |
M1 - (Pei L.) University of Pittsburgh Medical Center, Pittsburgh, PA, United States | |
M1 - (Srinivasan A.; Bapuraj J.R.; Yoshiaki O.; Moritani T.; Turk S.) Department of Neuroradiology, University of Michigan, Ann Arbor, MI, United States | |
M1 - (Rao A.; Wang N.; Lee J.; Prabhudesai S.) Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States | |
M1 - (Morón F.) Department of Radiology, Baylor College of Medicine, Houston, TX, United States | |
M1 - (Kamnitsas K.; Glocker B.) Department of Computing, Imperial College London, London, United Kingdom | |
M1 - (Kamnitsas K.) Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom | |
M1 - (Dixon L.V.M.) Department of Radiology, Imperial College NHS Healthcare Trust, London, United Kingdom | |
M1 - (Williams M.) Computational Oncology Group, Institute for Global Health Innovation, Imperial College London, London, United Kingdom | |
M1 - (Zampakis P.; Kalogeropoulou C.) Department of NeuroRadiology, University of Patras, Patras, Greece | |
M1 - (Panagiotopoulos V.) Department of Neurosurgery, University of Patras, Patras, Greece | |
M1 - (Tsiganos P.) Clinical Radiology Laboratory, Department of Medicine, University of Patras, Patras, Greece | |
M1 - (Alexiou S.; Zacharaki E.I.; Moustakas K.) Department of Electrical and Computer Engineering, University of Patras, Patras, Greece | |
M1 - (Haliassos I.) Department of Neuro-Oncology, University of Patras, Patras, Greece | |
M1 - (Kardamakis D.M.) Department of Radiation Oncology, University of Patras, Patras, Greece | |
M1 - (Choi Y.S.; Lee S.-K.; Chang J.H.; Ahn S.S.) Yonsei University College of Medicine, Seoul, South Korea | |
M1 - (Luo B.; Wen N.) Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States | |
M1 - (Poisson L.) Public Health Sciences, Henry Ford Health System, Detroit, MI, United States | |
M1 - (Wen N.) SJTU-Ruijin-UIH Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China | |
M1 - (Tiwari P.; Verma R.; Bareja R.; Yadav I.; Chen J.) Case Western Reserve University, Cleveland, OH, United States | |
M1 - (Smits M.; van der Voort S.R.; Alafandi A.; Incekara F.; Kapsas G.; Gahrmann R.) Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, Netherlands | |
M1 - (Incekara F.; Schouten J.W.; Vincent A.J.P.E.) Department of Neurosurgery, Brain Tumor Center, Erasmus MC University Medical Centre Rotterdam, Rotterdam, Netherlands | |
M1 - (Wijnenga M.M.J.; van den Bent M.J.; French P.J.) Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, Netherlands | |
M1 - (Dubbink H.J.) Department of Pathology, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, Netherlands | |
M1 - (Klein S.) Biomedical Imaging Group Rotterdam, Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, Netherlands | |
M1 - (Yuan Y.; Sharma S.; Tseng T.-C.; Adabi S.) Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States | |
M1 - (Niclou S.P.; Hau A.-C.) NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg | |
M1 - (Keunen O.) Translation Radiomics, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg | |
M1 - (Hau A.-C.) Luxembourg Center of Neuropathology, Laboratoire National De Santé, Luxembourg, Luxembourg | |
M1 - (Vallières M.) Department of Computer Science, Université de Sherbrooke, Sherbrooke, QC, Canada | |
M1 - (Vallières M.; Fortin D.; Lepage M.) Centre de Recherche du Centre Hospitalière Universitaire de Sherbrooke, Sherbrooke, QC, Canada | |
M1 - (Fortin D.) Division of Neurosurgery and Neuro-Oncology, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, QC, Canada | |
M1 - (Lepage M.) Department of Nuclear Medicine and Radiobiology, Sherbrooke Molecular Imaging Centre, Université de Sherbrooke, Sherbrooke, QC, Canada | |
M1 - (Landman B.; Ramadass K.) Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, United States | |
M1 - (Xu K.) Department of Computer Science, Vanderbilt University, Nashville, TN, United States | |
M1 - (Chotai S.; Chambless L.B.; Mistry A.; Thompson R.C.) Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, United States | |
M1 - (Gusev Y.; Bhuvaneshwar K.; Bencheqroun C.; Belouali A.; Madhavan S.) Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington, DC, United States | |
M1 - (Sayah A.) Division of Neuroradiology & Neurointerventional Radiology, Department of Radiology, MedStar Georgetown University Hospital, Washington, DC, United States | |
M1 - (Booth T.C.; Chelliah A.; Modat M.) School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom | |
M1 - (Booth T.C.) Department of Neuroradiology, Ruskin Wing, King’s College Hospital NHS Foundation Trust, London, United Kingdom | |
M1 - (Shuaib H.; Dragos C.) Stoke Mandeville Hospital, Mandeville Road, Aylesbury, United Kingdom | |
M1 - (Shuaib H.; Simpson A.L.) Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada | |
M1 - (Abayazeed A.; Kolodziej K.; Hill M.) Neosoma Inc., Groton, MA, United States | |
M1 - (Abbassy A.; Gamal S.; Mekhaimar M.; Qayati M.) University of Cairo School of Medicine, Giza, Egypt | |
M1 - (Reyes M.) University of Bern, Bern, Switzerland | |
M1 - (Park J.E.; Yun J.; Kim H.S.) Department of Radiology, Asan Medical Center, Seoul, South Korea | |
M1 - (Mahajan A.) The Clatterbridge Cancer Centre NHS Foundation Trust Pembroke Place, Liverpool, United Kingdom | |
M1 - (Muzi M.) Department of Radiology, University of Washington, Seattle, WA, United States | |
M1 - (Benson S.; Teuwen J.) Netherlands Cancer Institute, Amsterdam, Netherlands | |
M1 - (Beets-Tan R.G.H.) Department of Radiology, Netherlands Cancer Institute, Amsterdam, Netherlands | |
M1 - (Beets-Tan R.G.H.) GROW School of Oncology and Developmental Biology, Maastricht, Netherlands | |
M1 - (Herrera-Trujillo A.; Escobar W.) Clínica Imbanaco Grupo Quirón Salud, Cali, Colombia | |
M1 - (Herrera-Trujillo A.; Trujillo M.; Escobar W.; Abello A.; Bernal J.; Gómez J.) Universidad del Valle, Cali, Colombia | |
M1 - (Bernal J.) The University of Edinburgh, Edinburgh, United Kingdom | |
M1 - (Choi J.) Department of Industrial and Systems Engineering, University of Iowa, IA, United States | |
M1 - (Baek S.) Department of Industrial and Systems Engineering, Department of Radiation Oncology, University of Iowa, Iowa City, IA, United States | |
M1 - (Kim Y.; Ismael H.; Allen B.; Buatti J.M.) Department of Radiation Oncology, University of Iowa, Iowa City, IA, United States | |
M1 - (Kotrotsou A.) MD Anderson Cancer Center, University of Texas, Houston, TX, United States | |
M1 - (Li H.; Menze B.) Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland | |
M1 - (Weiss T.; Weller M.) Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland | |
M1 - (Bink A.; Pouymayou B.) Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland | |
M1 - (Shaykh H.F.) University of Alabama in Birmingham, Birmingham, AL, United States | |
M1 - (Saltz J.; Prasanna P.; Shrestha S.; Mani K.M.; Kurc T.) Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, United States | |
M1 - (Mani K.M.) Department of Radiation Oncology, Stony Brook University, Stony Brook, NY, United States | |
M1 - (Payne D.) Department of Radiology, Stony Brook University, Stony Brook, NY, United States | |
M1 - (Kurc T.) Scientific Data Group, Oak Ridge National Laboratory, Oak Ridge, TN, United States | |
M1 - (Pelaez E.; Loayza F.) Escuela Superior Politecnica del Litoral, Guayas, Guayaquil, Ecuador | |
M1 - (Franco-Maldonado H.) Sociedad de Lucha Contral el Cancer - SOLCA, Guayaquil Ecuador, Guayaquil, Ecuador | |
M1 - (Quevedo S.) Universidad Católica de Cuenca, Cuenca, Ecuador | |
M1 - (Guevara P.; Torche E.; Mendoza C.; Vera F.; Ríos E.; López E.) Universidad de Concepción, Biobío, Concepción, Chile | |
M1 - (Velastin S.A.) School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom | |
M1 - (Ogbole G.; Soneye M.; Oyekunle D.; Osobu B.) Department of Radiology, University College Hospital Ibadan, Oyo, Nigeria | |
M1 - (Odafe-Oyibotha O.) Clinix Healthcare, Lagos, Lagos, Nigeria | |
M1 - (Shu’aibu M.) Department of Radiology, Muhammad Abdullahi Wase Teaching Hospital, Kano, Nigeria | |
M1 - (Dorcas A.) Department of Radiology, Obafemi Awolowo University Ile-Ife, Osun, Ile-Ife, Nigeria | |
M1 - (Dako F.) Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States | |
M1 - (Simpson A.L.; Hamghalam M.; Peoples J.J.; Hu R.; Tran A.) School of Computing, Queen’s University, Kingston, ON, Canada | |
M1 - (Hamghalam M.) Department of Electrical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran | |
M1 - (Cutler D.) The Faculty of Arts & Sciences, Queen’s University, Kingston, ON, Canada | |
M1 - (Moraes F.Y.) Department of Oncology, Queen’s University, Kingston, ON, Canada | |
M1 - (Boss M.A.; Gimpel J.; Veettil D.K.; Marella S.; Price C.; Cimino L.; Apgar C.) Center for Research and Innovation, American College of Radiology, Philadelphia, PA, United States | |
M1 - (Schmidt K.; Bialecki B.) Data Science Institute, American College of Radiology, Reston, VA, United States | |
M1 - (Barnholtz-Sloan J.S.) Center for Biomedical Informatics and Information Technology, National Cancer Institute (NCI), National Institute of Health, Bethesda, MD, United States | |
AD - S. Bakas, Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, United States | |
T1 - Author Correction: Federated learning enables big data for rare cancer boundary detection (Nature Communications, (2022), 13, 1, (7346), 10.1038/s41467-022-33407-5) | |
LA - English | |
KW - erratum | |
N2 - In this article the author name Carmen Balaña was incorrectly written as Carmen Balaña Quintero. The original article has been corrected. | |
ER - | |
TY - JOUR | |
M3 - Article | |
Y1 - 2023 | |
VL - 6 | |
IS - 1 | |
SN - 2398-6352 | |
JF - npj Digital Medicine | |
JO - npj Digit. Med. | |
UR - https://www.embase.com/search/results?subaction=viewrecord&id=L2021345834&from=export | |
U2 - L2021345834 | |
DB - Embase | |
U3 - 2023-02-09 | |
U4 - 2023-02-28 | |
L2 - http://dx.doi.org/10.1038/s41746-023-00762-6 | |
DO - 10.1038/s41746-023-00762-6 | |
LK - https://slsp-unige.primo.exlibrisgroup.com/openurl/41SLSP_UGE/41SLSP_UGE:VU1?sid=EMBASE&sid=EMBASE&issn=23986352&id=doi:10.1038%2Fs41746-023-00762-6&atitle=A+tablet-based+game+for+the+assessment+of+visual+motor+skills+in+autistic+children&stitle=npj+Digit.+Med.&title=npj+Digital+Medicine&volume=6&issue=1&spage=&epage=&aulast=Perochon&aufirst=Sam&auinit=S.&aufull=Perochon+S.&coden=&isbn=&pages=-&date=2023&auinit1=S&auinitm= | |
A1 - Perochon, S. | |
A1 - Matias Di Martino, J. | |
A1 - Carpenter, K.L.H. | |
A1 - Compton, S. | |
A1 - Davis, N. | |
A1 - Espinosa, S. | |
A1 - Franz, L. | |
A1 - Rieder, A.D. | |
A1 - Sullivan, C. | |
A1 - Sapiro, G. | |
A1 - Dawson, G. | |
M1 - (Perochon S.; Matias Di Martino J.; Sapiro G., [email protected]) Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States | |
M1 - (Perochon S.) Ecole Normale Supérieure Paris-Saclay, Gif-Sur-Yvette, France | |
M1 - (Carpenter K.L.H.; Compton S.; Davis N.; Franz L.; Rieder A.D.; Sullivan C.; Dawson G., [email protected]) Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States | |
M1 - (Carpenter K.L.H.; Compton S.; Franz L.; Rieder A.D.; Sullivan C.; Dawson G., [email protected]) Duke Center for Autism and Brain Development, Duke University, Durham, NC, United States | |
M1 - (Espinosa S.) Office of Information Technology, Duke University, Durham, NC, United States | |
M1 - (Franz L.) Duke Global Health Institute, Duke University, Durham, NC, United States | |
AD - G. Sapiro, Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States | |
AD - G. Dawson, Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States | |
T1 - A tablet-based game for the assessment of visual motor skills in autistic children | |
LA - English | |
KW - tablet computer | |
KW - age | |
KW - area under the curve | |
KW - article | |
KW - attention deficit hyperactivity disorder | |
KW - autism | |
KW - Autism Diagnostic Observation Schedule | |
KW - child | |
KW - clinical assessment | |
KW - cognition | |
KW - computer vision | |
KW - controlled study | |
KW - female | |
KW - follow up | |
KW - human | |
KW - major clinical study | |
KW - male | |
KW - motor dysfunction | |
KW - motor performance | |
KW - Mullen scales of early learning | |
KW - receiver operating characteristic | |
KW - video game | |
N2 - Increasing evidence suggests that early motor impairments are a common feature of autism. Thus, scalable, quantitative methods for measuring motor behavior in young autistic children are needed. This work presents an engaging and scalable assessment of visual-motor abilities based on a bubble-popping game administered on a tablet. Participants are 233 children ranging from 1.5 to 10 years of age (147 neurotypical children and 86 children diagnosed with autism spectrum disorder [autistic], of which 32 are also diagnosed with co-occurring attention-deficit/hyperactivity disorder [autistic+ADHD]). Computer vision analyses are used to extract several game-based touch features, which are compared across autistic, autistic+ADHD, and neurotypical participants. Results show that younger (1.5-3 years) autistic children pop the bubbles at a lower rate, and their ability to touch the bubble’s center is less accurate compared to neurotypical children. When they pop a bubble, their finger lingers for a longer period, and they show more variability in their performance. In older children (3-10-years), consistent with previous research, the presence of co-occurring ADHD is associated with greater motor impairment, reflected in lower accuracy and more variable performance. Several motor features are correlated with standardized assessments of fine motor and cognitive abilities, as evaluated by an independent clinical assessment. These results highlight the potential of touch-based games as an efficient and scalable approach for assessing children’s visual-motor skills, which can be part of a broader screening tool for identifying early signs associated with autism. | |
ER - |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
TY - JOUR | |
AN - rayyan-536206336 | |
TI - Organic fertilization and alternative products in the control of powdery mildew | |
Y1 - 2020 | |
Y2 - 3 | |
T2 - Ornamental Horticulture | |
SN - 2447-536X | |
J2 - Ornamental Horticulture | |
VL - 26 | |
IS - 1 | |
SP - 57-68 | |
AU - Ramos, Sabrina Maiháve Barbosa | |
AU - Almeida, Elka Fabiana Aparecida | |
AU - Rocha, Fernando da Silva | |
AU - Fernandes, Maria de Fátima Gonçalves | |
AU - Santos, Ellen Beatriz dos | |
UR - http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2447-536X2020000100057&lang=en | |
LA - en | |
KW - Rosa sp. Oidium leucoconium | |
KW - severidade | |
KW - bicarbonato de sódio | |
KW - ácido pirolenhoso de café | |
KW - severity | |
KW - sodium bicarbonate | |
KW - coffee pyroligneous acid | |
KW - Self-Fertilization | |
AB - Abstract Rose is a plant of high nutritional requirement, susceptible to powdery mildew disease caused by fungus Oidium leucoconium, which causes leaf fall and losses in flower production. The objective of this study was to evaluate powdery mildew severity in rose cultivar ‘Grand Gala’ in response to organic fertilization and the application of alternative products to disease control. The first experiment was set in a factorial arrangement, with 5 alternative products: spraying with water as a control (PA), lime sulfur (CS), neem oil (ON), mixture of sodium bicarbonate and canola oil (BC) and coffee pyroligneous acid (APC) and 2 organic fertilizers: chicken manure (EA) and biofertilizer based on banana stalk (B). Disease severity was assessed at 0, 15, 30 and 45 days after the treatments. In the second experiment, asymptomatic leaves or with different powdery mildew severity levels were sprayed only once with the same alternative products mentioned above. Severity was assessed at 0, 7 and 14 days. The organic fertilizations did not influence the reduction in powdery mildew severity in rose. At 45 days, APC yielded a greater reduction in disease severity (81.6%), followed by treatments based on BC, ON and CS. Greater reduction in disease severity in experiment 2 occurred in the treatments of BC and CS, followed by APC. Therefore, it is possible to conclude that APC and the BC have the potential to control rose powdery mildew in an organic cultivation system. | |
AB - Resumo A roseira é uma planta de elevada exigência nutricional e suscetível ao oídio, doença que causa queda de folhas e perdas na produção de flores. Objetivou-se com esse trabalho avaliar a severidade de oídio em roseira cultivar ‘Grand Gala’ em resposta à adubação orgânica e a aplicação de produtos alternativos para o controle da doença. O primeiro experimento foi instalado em arranjo fatorial, sendo 5 produtos alternativos: água potável como testemunha- (AP), calda sulfocálcica (CS); óleo de nem (ON), mistura de bicarbonato de sódio mais óleo de canola (BC), ácido pirolenhoso de café (APC) e 2 adubações orgânicas: esterco de aves (EA) e biofertilizante à base de engaço de bananeira (B). As avaliações da severidade da doença foram realizadas aos 0, 15, 30 e 45 dias após os tratamentos. No segundo experimento, folhas assintomáticas ou com diferentes severidades de oídio foram pulverizadas apenas uma vez com os mesmos produtos alternativos mencionados anteriormente. A avaliação da severidade foi feita aos 0, 7 e 14 dias. As adubações orgânicas não influenciaram na redução da severidade do oídio da roseira. Aos 45 dias, APC proporcionou maior redução na severidade da doença (81,6%), seguido pelos tratamentos à base BC (61%), ON (58,96%) e CS (60,3%). Maior redução da severidade da doença no experimento 2 ocorreu nos tratamentos com BC e CS, seguida pelo APC. Portanto, pode-se concluir que o APC e BC possuem potencial no controle do oídio da roseira em sistema de cultivo orgânico. | |
DO - 10.1590/2447-536x.v26i1.2109 | |
ER - | |
TY - JOUR | |
AN - rayyan-536206337 | |
TI - CARBON BALANCE IN ORGANIC CONILON COFFEE INTERCROPPED WITH TREE SPECIES AND BANANA | |
Y1 - 2020 | |
T2 - Revista Árvore | |
SN - 0100-6762 | |
J2 - Revista Árvore | |
VL - 44 | |
SP - - | |
AU - Silva, Diego Mathias Natal da | |
AU - Heitor, Letícia Célia | |
AU - Candido, Aildosn de Oliveira | |
AU - Moraes, Bárbara Santos Antônio de | |
AU - Souza, Gustavo Soares de | |
AU - Araújo, João Batista Silva | |
AU - Mendonça, Eduardo de Sá | |
UR - http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-67622020000100219&lang=en | |
LA - en | |
KW - Coffea canephora | |
KW - Agroforestry system | |
KW - Soil organic matter | |
KW - Musa | |
KW - Trees | |
KW - Coffee | |
AB - ABSTRACT Over the last decade, conilon coffee (Coffea canephora) in consortium with wood trees has been established to improve environmental conditions. Little is known about how individual wood trees and banana affect soil quality when intercropped with conilon coffee. The objective of the present study was to evaluate the impacts of intercropping organic conilon coffee with different wood tree species and banana on C balance. Five cultivation systems including conilon coffee monoculture and intercropped with Inga edulis, Gliricidia sepium, BRS Japira banana (Musa sp.), or Bactris gasipaes were studied in a randomized complete block design, with four replicates at the south of Espírito Santo State, Brazil. A primary forest fragment adjacent to the experiment was also evaluated for comparison with the consortium. Samples of topsoil (0 to 10 cm) were collected in 2016 to evaluate the total organic C and total N. Soil temperature and moisture at 0 to 5 cm depth and the CO2 emission were measured monthly over one year. The species planted with the conilon coffee promoted a 5.52% decrease in the soil temperature and a 17% increase in the soil moisture content. They also promoted an increase in annual C balance, especially intercropped with Gliricidia and Inga (4.70 and 3.56 Mg ha-1, respectively), with a substantial increase in the soil total organic C and total N in both systems. | |
AB - RESUMO Na última década, o café conilon (Coffea canephora) em consórcio com árvores foi estabelecido para melhorar as condições ambientais. Pouco se sabe sobre como o cultivo de árvores e de banana afetam a qualidade do solo quando consorciados com café conilon. O objetivo do presente estudo foi avaliar os impactos do consórcio de café conilon orgânico com diferentes espécies arbóreas e banana no balanço de C. Cinco sistemas de cultivo, incluindo monocultura de café conilon e consorciados com Inga edulis, Gliricidia sepium, banana BRS Japira (Musa sp.) ou Bactris gasipaes foram estudados em delineamento de blocos ao acaso, com quatro repetições no sul do Espírito Santo, Brasil. Um fragmento de floresta primária adjacente ao experimento foi avaliado para comparação com o consórcio. Amostras superficiais de solo (0 a 10 cm) foram coletadas em 2016 para avaliar o C orgânico total e o N total. A temperatura e umidade do solo de 0 a 5 cm de profundidade e a emissão de CO2 foram medidas mensalmente ao longo de um ano. As espécies plantadas com o café conilon promoveram redução de 5,52% na temperatura do solo e aumento de 17% no teor de umidade do solo. Também promoveu aumento no balanço anual de C, consorciado especialmente com Gliricidia e Inga (4,70 e 3,56 Mg ha-1, respectivamente), com aumento substancial no C orgânico total do solo e N total nos dois sistemas. | |
DO - 10.1590/1806-908820200000021 | |
ER - | |
TY - JOUR | |
AN - rayyan-536206338 | |
TI - Efeitos de atributos ambientais na biodiversidade de formigas sob diferentes usos do solo | |
Y1 - 2019 | |
Y2 - 6 | |
T2 - Ciência Florestal | |
SN - 1980-5098 | |
J2 - Ciência Florestal | |
VL - 29 | |
IS - 2 | |
SP - 660-672 | |
AU - Amaral, Gustavo Correiro do | |
AU - Vargas, André Barbosa | |
AU - Almeida, Fábio Souto | |
UR - http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1980-50982019000200660&lang=en | |
LA - pt | |
KW - Conservação | |
KW - Formicidae | |
KW - Sistemas agroflorestais | |
KW - Agroforestry systems | |
KW - Conservation | |
AB - Abstract The objective was to evaluate the influence of environmental variables on the ant fauna, in cultivated areas and in a native forest fragment. The data were collected in the municipality of Seropédica, Rio de Janeiro state, in the rainy and dry seasons, in a banana plantation (Musa pariadisiaca L.), an agroforest, a coffee plantation (Coffea conephora Pierre) shaded with Gliricidia sepium (Jacq.) and a forest fragment (8 ha) in the intermediate stage of secondary succession. For the sampling, soil pitfall traps and the Winkler extractor were used. A total of 53 species were collected in the present study. The highest species richness was observed in the agroforestry (38 species), followed by shaded coffee (31 species), secondary forest (29 species) and banana plantation (28 species). In the dry season there was effect of land use type and leaf litter depth on the richness and diversity of ant species. In both seasons, ant species composition varied significantly among all the studied areas. The agroforestry systems are important alternatives to monocultures due to their diversity of cultivated species and plant strata. Thus, the increase of the structural heterogeneity of the environment and the leaf litter depth, in cultivated areas in the dry season, may lead to greater species richness and diversity as well as changes in the species composition. | |
AB - Resumo O objetivo foi avaliar a influência de variáveis ambientais sobre a fauna de formigas em um fragmento de floresta nativa e em áreas cultivadas. Os dados foram coletados no município de Seropédica - RJ, nas estações chuvosa e seca, em um cultivo de bananas (Musa pariadisiaca L.), uma agrofloresta, um cafezal (Coffea conephora Pierre) sombreado com Gliricidia sepium (Jacq.) e um fragmento de floresta (8 ha) em estágio intermediário de sucessão secundária. Para a amostragem, foram utilizadas armadilhas de queda tipo pitfall e extratores de Winkler. Foram coletadas 53 espécies de formigas, ocorrendo maior riqueza de espécies na agrofloresta (38 espécies), seguida do cafezal (31 espécies), floresta secundária (29 espécies) e plantação de bananeiras (28 espécies). Na estação seca houve o efeito do tipo de uso do solo e da profundidade de serapilheira sobre a riqueza e diversidade de espécies de formigas. Nas duas estações, a composição de espécies de formigas variou significativamente entre todas as áreas estudadas. Os sistemas agroflorestais funcionam como alternativa às monoculturas pela diversidade de espécies cultivadas e estratos vegetais que apresentam. Neste sentido, o aumento da heterogeneidade estrutural do ambiente e da profundidade de serapilheira, em áreas cultivadas na estação seca, proporciona maior riqueza e diversidade de espécies de formigas, além de mudanças na composição de espécies. | |
DO - 10.5902/1980509833811 | |
ER - |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
TY - JOUR | |
AU - Thevenot, J | |
AU - Lopez, MB | |
AU - Hadid, A | |
TI - A Survey on Computer Vision for Assistive Medical Diagnosis From Faces | |
T2 - IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS | |
LA - English | |
KW - Computer vision | |
KW - face analysis | |
KW - facial symptoms | |
KW - imaging | |
KW - medical diagnosis | |
KW - FETAL ALCOHOL SYNDROME | |
KW - LOCAL BINARY PATTERNS | |
KW - INFRARED THERMOGRAPHY | |
KW - FACIAL PHENOTYPE | |
KW - QUANTITATIVE-ANALYSIS | |
KW - MORPHOMETRIC-ANALYSIS | |
KW - MASTICATORY MUSCLES | |
KW - AIDED DIAGNOSIS | |
KW - PAIN EXPRESSION | |
KW - MOTION ANALYSIS | |
AB - Automatic medical diagnosis is an emerging center of interest in computer vision as it provides unobtrusive objective information on a patient's condition. The face, as a mirror of health status, can reveal symptomatic indications of specific diseases. Thus, the detection of facial abnormalities or atypical features is at up most importance when it comes to medical diagnostics. This survey aims to give an overview of the recent developments in medical diagnostics from facial images based on computer vision methods. Various approaches have been considered to assess facial symptoms and to eventually provide further help to the practitioners. However, the developed tools are still seldom used in clinical practice, since their reliability is still a concern due to the lack of clinical validation of the methodologies and their inadequate applicability. Nonetheless, efforts are being made to provide robust solutions suitable for healthcare environments, by dealing with practical issues such as real-time assessment or patients positioning. This survey provides an updated collection of the most relevant and innovative solutions in facial images analysis. The findings show that with the help of computer vision methods, over 30 medical conditions can be preliminarily diagnosed from the automatic detection of some of their symptoms. Furthermore, future perspectives, such as the need for interdisciplinary collaboration and collecting publicly available databases, are highlighted. | |
AD - Univ Oulu, Med Imaging Phys & Technol Res Unit, Oulu 90014, Finland | |
AD - Univ Oulu, Ctr Machine Vis & Signal Anal, Oulu 90014, Finland | |
C3 - University of Oulu | |
C3 - University of Oulu | |
PU - IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC | |
PI - PISCATAWAY | |
PA - 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA | |
SN - 2168-2194 | |
SN - 2168-2208 | |
J9 - IEEE J BIOMED HEALTH | |
JI - IEEE J. Biomed. Health Inform. | |
DA - SEP | |
PY - 2018 | |
VL - 22 | |
IS - 5 | |
SP - 1497 | |
EP - 1511 | |
DO - 10.1109/JBHI.2017.2754861 | |
WE - Science Citation Index Expanded (SCI-EXPANDED) | |
WE - Social Science Citation Index (SSCI) | |
AN - WOS:000441795800017 | |
N1 - Times Cited in Web of Science Core Collection: 70 | |
Total Times Cited: 71 | |
Cited Reference Count: 196 | |
ER - | |
TY - JOUR | |
AU - Parvaiz, A | |
AU - Khalid, MA | |
AU - Zafar, R | |
AU - Ameer, H | |
AU - Ali, M | |
AU - Fraz, MM | |
TI - Vision Transformers in medical computer vision-A contemplative retrospection | |
T2 - ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE | |
LA - English | |
KW - Vision Transformers | |
KW - Medical image analysis | |
KW - Self attention | |
KW - Medical computer vision | |
KW - Diagnostic image analysis | |
KW - Literature survey | |
KW - CONVOLUTIONAL NEURAL-NETWORK | |
KW - BARRETTS-ESOPHAGUS | |
KW - IMAGE DATABASE | |
KW - LUNG-CANCER | |
KW - SEGMENTATION | |
KW - TOMOGRAPHY | |
KW - COVID-19 | |
KW - CNN | |
KW - LOCALIZATION | |
KW - NODULES | |
AB - Vision Transformers (ViTs), with the magnificent potential to unravel the information contained within images, have evolved as one of the most contemporary and dominant architectures that are being used in the field of computer vision. These are immensely utilized by plenty of researchers to perform new as well as former experiments. Here, in this article, we investigate the intersection of vision transformers and medical images. We proffered an overview of various ViT based frameworks that are being used by different researchers to decipher the obstacles in medical computer vision. We surveyed the applications of Vision Transformers in different areas of medical computer vision such as image-based disease classification, anatomical structure segmentation, registration, region-based lesion detection, captioning, report generation, and reconstruction using multiple medical imaging modalities that greatly assist in medical diagnosis and hence treatment process. Along with this, we also demystify several imaging modalities used in medical computer vision. Moreover, to get more insight and deeper understanding, the self-attention mechanism of transformers is also explained briefly. Conclusively, the ViT based solutions for each image analytics task are critically analyzed, open challenges are discussed and the pointers to possible solutions for future direction are deliberated. We hope this review article will open future research directions for medical computer vision researchers. | |
AD - Natl Univ Sci & Technol NUST, Islamabad 44000, Pakistan | |
C3 - National University of Sciences & Technology - Pakistan | |
PU - PERGAMON-ELSEVIER SCIENCE LTD | |
PI - OXFORD | |
PA - THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND | |
SN - 0952-1976 | |
SN - 1873-6769 | |
J9 - ENG APPL ARTIF INTEL | |
JI - Eng. Appl. Artif. Intell. | |
DA - JUN | |
PY - 2023 | |
VL - 122 | |
C7 - 106126 | |
DO - 10.1016/j.engappai.2023.106126 | |
C6 - MAR 2023 | |
WE - Science Citation Index Expanded (SCI-EXPANDED) | |
AN - WOS:000959475400001 | |
N1 - Times Cited in Web of Science Core Collection: 3 | |
Total Times Cited: 3 | |
Cited Reference Count: 243 | |
ER - | |
TY - JOUR | |
AU - Seo, J | |
AU - Han, S | |
AU - Lee, S | |
AU - Kim, H | |
TI - Computer vision techniques for construction safety and health monitoring | |
T2 - ADVANCED ENGINEERING INFORMATICS | |
LA - English | |
KW - Construction safety and health | |
KW - Computer vision | |
KW - Monitoring | |
KW - TRACKING METHODS | |
KW - IMAGE | |
KW - EQUIPMENT | |
KW - RECOGNITION | |
KW - MODEL | |
KW - CLASSIFICATION | |
KW - IDENTIFICATION | |
KW - SEGMENTATION | |
KW - WORKPLACE | |
KW - CAPTURE | |
AB - For construction safety and health, continuous monitoring of unsafe conditions and action is essential in order to eliminate potential hazards in a timely manner. As a robust and automated means of field observation, computer vision techniques have been applied for the extraction of safety related information from site images and videos, and regarded as effective solutions complementary to current time-consuming and unreliable manual observational practices. Although some research efforts have been directed toward computer vision-based safety and health monitoring, its application in real practice remains premature due to a number of technical issues and research challenges in terms of reliability, accuracy, and applicability. This paper thus reviews previous attempts in construction applications from both technical and practical perspectives in order to understand the current status of computer vision techniques, which in turn suggests the direction of future research in the field of computer vision-based safety and health monitoring. Specifically, this paper categorizes previous studies into three groups-object detection, object tracking, and action recognition-based on types of information required to evaluate unsafe conditions and acts. The results demonstrate that major research challenges include comprehensive scene understanding, varying tracking accuracy by camera position, and action recognition of multiple equipment and workers. In addition, we identified several practical issues including a lack of task-specific and quantifiable metrics to evaluate the extracted information in safety context, technical obstacles due to dynamic conditions at construction sites and privacy issues. These challenges indicate a need for further research in these areas. Accordingly, this paper provides researchers insights into advancing knowledge and techniques for computer vision-based safety and health monitoring, and offers fresh opportunities and considerations to practitioners in understanding and adopting the techniques. (C) 2015 Elsevier Ltd. All rights reserved. | |
AD - Univ Michigan, Dept Civil & Environm Engn, Tishman Construct Management Program, Ann Arbor, MI 48109 USA | |
AD - Univ Alberta, Dept Civil & Environm Engn, Edmonton, AB T6G 2W2, Canada | |
AD - Yonsei Univ, Sch Civil & Environm Engn, Seoul 120749, South Korea | |
C3 - University of Michigan System | |
C3 - University of Michigan | |
C3 - University of Alberta | |
C3 - Yonsei University | |
FU - National Science Foundation [CMMI-1161123]; Directorate For Engineering [1161123] Funding Source: National Science Foundation; Div Of Civil, Mechanical, & Manufact Inn [1161123] Funding Source: National Science Foundation | |
FX - The work presented in this paper was supported financially with a National Science Foundation Award (No. CMMI-1161123). Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation. | |
PU - ELSEVIER SCI LTD | |
PI - OXFORD | |
PA - THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND | |
SN - 1474-0346 | |
SN - 1873-5320 | |
J9 - ADV ENG INFORM | |
JI - Adv. Eng. Inform. | |
DA - APR | |
PY - 2015 | |
VL - 29 | |
IS - 2 | |
SP - 239 | |
EP - 251 | |
DO - 10.1016/j.aei.2015.02.001 | |
WE - Science Citation Index Expanded (SCI-EXPANDED) | |
WE - Social Science Citation Index (SSCI) | |
AN - WOS:000355038200009 | |
N1 - Times Cited in Web of Science Core Collection: 266 | |
Total Times Cited: 272 | |
Cited Reference Count: 93 | |
ER - |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment