Last active
March 7, 2022 15:51
-
-
Save yamaguchiyuto/504eb5482fc73f046f6b to your computer and use it in GitHub Desktop.
Plot degree distribution (Freq, CDF, CCDF) from edgelist data
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
import numpy as np | |
import networkx as nx | |
import matplotlib.pyplot as plt | |
def plot(data,filename,degreetype): | |
""" Plot Distribution """ | |
plt.plot(range(len(data)),data,'bo') | |
plt.yscale('log') | |
plt.xscale('log') | |
plt.ylabel('Freq') | |
plt.xlabel('Degree') | |
plt.savefig(filename + '_' + degreetype + '_distribution.eps') | |
plt.clf() | |
""" Plot CDF """ | |
s = float(data.sum()) | |
cdf = data.cumsum(0)/s | |
plt.plot(range(len(cdf)),cdf,'bo') | |
plt.xscale('log') | |
plt.ylim([0,1]) | |
plt.ylabel('CDF') | |
plt.xlabel('Degree') | |
plt.savefig(filename + '_' + degreetype + '_cdf.eps') | |
plt.clf() | |
""" Plot CCDF """ | |
ccdf = 1-cdf | |
plt.plot(range(len(ccdf)),ccdf,'bo') | |
plt.xscale('log') | |
plt.yscale('log') | |
plt.ylim([0,1]) | |
plt.ylabel('CCDF') | |
plt.xlabel('Degree') | |
plt.savefig(filename + '_' + degreetype + '_ccdf.eps') | |
plt.clf() | |
edgelist_file = sys.argv[1] | |
""" Load graph """ | |
G = nx.read_edgelist(edgelist_file, nodetype=int, create_using=nx.DiGraph()) | |
""" To sparse adjacency matrix """ | |
M = nx.to_scipy_sparse_matrix(G) | |
indegrees = M.sum(0).A[0] | |
outdegrees = M.sum(1).T.A[0] | |
indegree_distribution = np.bincount(indegrees) | |
outdegree_distribution = np.bincount(outdegrees) | |
plot(indegree_distribution, edgelist_file, 'indegree') | |
plot(outdegree_distribution, edgelist_file, 'outdegree') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
how does this thing work?