Created
March 21, 2017 07:27
-
-
Save yamaguchiyuto/c5f73775e5f394037a5e0c90151ba920 to your computer and use it in GitHub Desktop.
Correspondence Topic Model
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import random | |
import numpy as np | |
from scipy.sparse import lil_matrix | |
class CTM: | |
def __init__(self, K, alpha, beta, gamma, max_iter, verbose=0): | |
self.K=K | |
self.alpha = alpha | |
self.beta = beta | |
self.gamma = gamma | |
self.max_iter = max_iter | |
self.verbose=verbose | |
def fit(self,W,X,Vw,Vx): | |
self._W = W | |
self._X = X | |
self._D = len(W) | |
self._Vw = Vw # number of vocabularies | |
self._Vx = Vx # number of vocabularies | |
self.Z = self._init_Z() | |
self.Y = self._init_Y() | |
self.ndk = self._init_ndk() | |
self.mdk = self._init_mdk() | |
self.nkw = self._init_nkw() # for W | |
self.nkx = self._init_nkx() # for x | |
nkw_sum = self.nkw.sum(axis=1) | |
nkx_sum = self.nkx.sum(axis=1) | |
remained_iter = self.max_iter | |
while True: | |
if self.verbose: print remained_iter | |
for d in np.random.choice(self._D, self._D, replace=False): | |
# Sample Z | |
for i in np.random.choice(len(self._W[d]), len(self._W[d]), replace=False): | |
k = self.Z[d][i] | |
v = self._W[d][i] | |
self.ndk[d][k] -= 1 | |
self.nkw[k][v] -= 1 | |
nkw_sum[k] -= 1 | |
self.Z[d][i] = self._sample_z(d,k,v,nkw_sum) | |
self.ndk[d][self.Z[d][i]] += 1 | |
self.nkw[self.Z[d][i]][v] += 1 | |
nkw_sum[self.Z[d][i]] += 1 | |
# Sample Y | |
for i in np.random.choice(len(self._X[d]), len(self._X[d]), replace=False): | |
k = self.Y[d][i] | |
u = self._X[d][i] | |
self.mdk[d][k] -= 1 | |
self.nkx[k][u] -= 1 | |
nkx_sum[k] -= 1 | |
self.Y[d][i] = self._sample_y(d,u,nkx_sum) | |
self.mdk[d][self.Y[d][i]] += 1 | |
self.nkx[self.Y[d][i]][u] += 1 | |
nkx_sum[self.Y[d][i]] += 1 | |
remained_iter -= 1 | |
if remained_iter <= 0: break | |
return self | |
def _init_Z(self): | |
Z = [] | |
for d in range(len(self._W)): | |
Z.append(np.random.randint(low=0,high=self.K,size=len(self._W[d]))) | |
return Z | |
def _init_Y(self): | |
Y = [] | |
for d in range(len(self._X)): | |
Y.append(np.random.choice(self.Z[d],size=len(self._X[d]))) | |
return Y | |
def _init_ndk(self): | |
ndk = np.zeros((self._D,self.K)) + self.alpha | |
for d in range(self._D): | |
for i in range(len(self._W[d])): | |
k = self.Z[d][i] | |
ndk[d,k]+=1 | |
return ndk | |
def _init_mdk(self): | |
mdk = np.zeros((self._D,self.K)) | |
for d in range(self._D): | |
for i in range(len(self._X[d])): | |
k = self.Y[d][i] | |
mdk[d,k]+=1 | |
return mdk | |
def _init_nkw(self): | |
nkw = np.zeros((self.K,self._Vw)) + self.beta | |
for d in range(self._D): | |
for i in range(len(self._W[d])): | |
k = self.Z[d][i] | |
v = self._W[d][i] | |
nkw[k,v]+=1 | |
return nkw | |
def _init_nkx(self): | |
nkx = np.zeros((self.K,self._Vx)) + self.gamma | |
for d in range(self._D): | |
for i in range(len(self._X[d])): | |
k = self.Y[d][i] | |
u = self._X[d][i] | |
nkx[k,u]+=1 | |
return nkx | |
def _sample_z(self,d,old_k,v,nkw_sum): | |
nkw = self.nkw[:,v] # k-dimensional vector | |
if self.ndk[d,old_k]==0: | |
if self.mdk[d,old_k]>0: | |
return old_k | |
else: | |
prob = self.ndk[d] * (nkw/nkw_sum) * ((self.ndk[d]+1)/self.ndk[d])**self.mdk[d] | |
prob = prob/prob.sum() | |
z = np.random.multinomial(n=1, pvals=prob).argmax() | |
return z | |
def _sample_y(self,d,u,nkx_sum): | |
nkx = self.nkx[:,u] # k-dimensional vector | |
prob = (self.ndk[d]-self.alpha) * (nkx/nkx_sum) | |
prob = prob/prob.sum() | |
y = np.random.multinomial(n=1, pvals=prob).argmax() | |
return y |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment