Created
March 22, 2017 00:00
-
-
Save yamaguchiyuto/f8d963ab9edf18ffd2c6ac53dee075d5 to your computer and use it in GitHub Desktop.
Noisy Correspondence Topic Model
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import random | |
import numpy as np | |
from scipy.sparse import lil_matrix | |
class NCTM: | |
def __init__(self, K, alpha, beta, gamma, eta, max_iter, verbose=0): | |
self.K=K | |
self.alpha = alpha | |
self.beta = beta | |
self.gamma = gamma | |
self.eta = eta | |
self.max_iter = max_iter | |
self.verbose=verbose | |
def fit(self,W,X,Vw,Vx): | |
self._W = W | |
self._X = X | |
self._D = len(W) | |
self._Vw = Vw # number of vocabularies | |
self._Vx = Vx # number of vocabularies | |
self.Z = self._init_Z() | |
self.Y = self._init_Y() | |
self.R = self._init_R() | |
self.ndk = self._init_ndk() | |
self.mdk = self._init_mdk() | |
self.nkw = self._init_nkw() # for W | |
self.nkx = self._init_nkx() # for x | |
self.m0x = self._init_m0x() # number of noise assignment for x | |
nkw_sum = self.nkw.sum(axis=1) | |
nkx_sum = self.nkx.sum(axis=1) | |
m0x_sum = self.m0x.sum() | |
m1x_sum = nkx_sum.sum() | |
remained_iter = self.max_iter | |
while True: | |
if self.verbose: print remained_iter | |
for d in np.random.choice(self._D, self._D, replace=False): | |
# Sample Z | |
for i in np.random.choice(len(self._W[d]), len(self._W[d]), replace=False): | |
k = self.Z[d][i] | |
v = self._W[d][i] | |
self.ndk[d][k] -= 1 | |
self.nkw[k][v] -= 1 | |
nkw_sum[k] -= 1 | |
self.Z[d][i] = self._sample_z(d,k,v,nkw_sum) | |
self.ndk[d][self.Z[d][i]] += 1 | |
self.nkw[self.Z[d][i]][v] += 1 | |
nkw_sum[self.Z[d][i]] += 1 | |
for d in np.random.choice(self._D, self._D, replace=False): | |
# Sample Y | |
for i in np.random.choice(len(self._X[d]), len(self._X[d]), replace=False): | |
if self.R[d][i]==1: | |
k = self.Y[d][i] | |
u = self._X[d][i] | |
self.mdk[d][k] -= 1 | |
self.nkx[k][u] -= 1 | |
nkx_sum[k] -= 1 | |
self.Y[d][i] = self._sample_y(d,u,nkx_sum) | |
self.mdk[d][self.Y[d][i]] += 1 | |
self.nkx[self.Y[d][i]][u] += 1 | |
nkx_sum[self.Y[d][i]] += 1 | |
for d in np.random.choice(self._D, self._D, replace=False): | |
# Sample R | |
for i in np.random.choice(len(self._X[d]), len(self._X[d]), replace=False): | |
r = self.R[d][i] | |
k = self.Y[d][i] | |
u = self._X[d][i] | |
if r==0: | |
self.m0x[u] -= 1 | |
m0x_sum -= 1 | |
else: | |
self.mdk[d][k] -= 1 | |
self.nkx[k][u] -= 1 | |
nkx_sum[k] -= 1 | |
m1x_sum -= 1 | |
self.R[d][i] = self._sample_r(u,k,nkx_sum,m0x_sum,m1x_sum) | |
if self.R[d][i]==0: | |
self.m0x[u] += 1 | |
m0x_sum += 1 | |
else: | |
self.mdk[d][k] += 1 | |
self.nkx[k][u] += 1 | |
nkx_sum[k] += 1 | |
m1x_sum += 1 | |
remained_iter -= 1 | |
if remained_iter <= 0: break | |
return self | |
def _init_Z(self): | |
Z = [] | |
for d in range(len(self._W)): | |
Z.append(np.random.randint(low=0,high=self.K,size=len(self._W[d]))) | |
return Z | |
def _init_Y(self): | |
Y = [] | |
for d in range(len(self._X)): | |
Y.append(np.random.choice(self.Z[d],size=len(self._X[d]))) | |
return Y | |
def _init_R(self): | |
R = [] | |
for d in range(len(self._X)): | |
R.append(np.random.choice([0,1],size=len(self._X[d]))) | |
return R | |
def _init_ndk(self): | |
ndk = np.zeros((self._D,self.K)) | |
for d in range(self._D): | |
for i in range(len(self._W[d])): | |
k = self.Z[d][i] | |
ndk[d,k]+=1 | |
return ndk | |
def _init_mdk(self): | |
mdk = np.zeros((self._D,self.K)) | |
for d in range(self._D): | |
for i in range(len(self._X[d])): | |
if self.R[d][i]==1: | |
k = self.Y[d][i] | |
mdk[d,k]+=1 | |
return mdk | |
def _init_nkw(self): | |
nkw = np.zeros((self.K,self._Vw)) | |
for d in range(self._D): | |
for i in range(len(self._W[d])): | |
k = self.Z[d][i] | |
v = self._W[d][i] | |
nkw[k,v]+=1 | |
return nkw | |
def _init_nkx(self): | |
nkx = np.zeros((self.K,self._Vx)) | |
for d in range(self._D): | |
for i in range(len(self._X[d])): | |
if self.R[d][i]==1: | |
k = self.Y[d][i] | |
u = self._X[d][i] | |
nkx[k,u]+=1 | |
return nkx | |
def _init_m0x(self): | |
m0x = np.zeros(self._Vx) | |
for d in range(self._D): | |
for i in range(len(self._X[d])): | |
r = self.R[d][i] | |
u = self._X[d][i] | |
if r==0: m0x[u]+=1 | |
return m0x | |
def _sample_z(self,d,old_k,v,nkw_sum): | |
nkw = self.nkw[:,v] # k-dimensional vector | |
if self.ndk[d,old_k]==0 and self.mdk[d,old_k]>0: | |
return old_k | |
else: | |
ndk = self.ndk[d].copy() | |
ndk[ndk==0] += 1 | |
prob = (self.ndk[d]+self.alpha) * ((nkw+self.beta)/(nkw_sum+self.beta*self._Vw)) * ((ndk+1)/ndk)**self.mdk[d] | |
prob = prob/prob.sum() | |
z = np.random.multinomial(n=1, pvals=prob).argmax() | |
return z | |
def _sample_y(self,d,u,nkx_sum): | |
nkx = self.nkx[:,u] # k-dimensional vector | |
prob = self.ndk[d] * ((nkx+self.gamma)/(nkx_sum+self.gamma*self._Vx)) | |
prob = prob/prob.sum() | |
y = np.random.multinomial(n=1, pvals=prob).argmax() | |
return y | |
def _sample_r(self,u,k,nkx_sum,m0x_sum,m1x_sum): | |
nkx = self.nkx[k,u] | |
p0 = (m0x_sum+self.eta) * ((self.m0x[u]+self.gamma)/(m0x_sum+self.gamma*self._Vx)) | |
p1 = (m1x_sum+self.eta) * ((nkx+self.gamma)/(nkx_sum[k]+self.gamma*self._Vx)) | |
p = p1/(p1+p0) | |
r = np.random.multinomial(n=1, pvals=[1-p,p]).argmax() | |
return r |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment