Skip to content

Instantly share code, notes, and snippets.

@ycopin
Last active October 28, 2025 16:51
Show Gist options
  • Select an option

  • Save ycopin/3342888 to your computer and use it in GitHub Desktop.

Select an option

Save ycopin/3342888 to your computer and use it in GitHub Desktop.
Taylor diagram for python/matplotlib [ 10.5281/zenodo.5548061 ]
#!/usr/bin/env python
# Copyright: This document has been placed in the public domain.
"""
Taylor diagram (Taylor, 2001) implementation.
Note: If you have found these software useful for your research, I would
appreciate an acknowledgment.
"""
__version__ = "Time-stamp: <2018-12-06 11:43:41 ycopin>"
__author__ = "Yannick Copin <[email protected]>"
import numpy as NP
import matplotlib.pyplot as PLT
class TaylorDiagram(object):
"""
Taylor diagram.
Plot model standard deviation and correlation to reference (data)
sample in a single-quadrant polar plot, with r=stddev and
theta=arccos(correlation).
"""
def __init__(self, refstd,
fig=None, rect=111, label='_', srange=(0, 1.5), extend=False):
"""
Set up Taylor diagram axes, i.e. single quadrant polar
plot, using `mpl_toolkits.axisartist.floating_axes`.
Parameters:
* refstd: reference standard deviation to be compared to
* fig: input Figure or None
* rect: subplot definition
* label: reference label
* srange: stddev axis extension, in units of *refstd*
* extend: extend diagram to negative correlations
"""
from matplotlib.projections import PolarAxes
import mpl_toolkits.axisartist.floating_axes as FA
import mpl_toolkits.axisartist.grid_finder as GF
self.refstd = refstd # Reference standard deviation
tr = PolarAxes.PolarTransform()
# Correlation labels
rlocs = NP.array([0, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 1])
if extend:
# Diagram extended to negative correlations
self.tmax = NP.pi
rlocs = NP.concatenate((-rlocs[:0:-1], rlocs))
else:
# Diagram limited to positive correlations
self.tmax = NP.pi/2
tlocs = NP.arccos(rlocs) # Conversion to polar angles
gl1 = GF.FixedLocator(tlocs) # Positions
tf1 = GF.DictFormatter(dict(zip(tlocs, map(str, rlocs))))
# Standard deviation axis extent (in units of reference stddev)
self.smin = srange[0] * self.refstd
self.smax = srange[1] * self.refstd
ghelper = FA.GridHelperCurveLinear(
tr,
extremes=(0, self.tmax, self.smin, self.smax),
grid_locator1=gl1, tick_formatter1=tf1)
if fig is None:
fig = PLT.figure()
ax = FA.FloatingSubplot(fig, rect, grid_helper=ghelper)
fig.add_subplot(ax)
# Adjust axes
ax.axis["top"].set_axis_direction("bottom") # "Angle axis"
ax.axis["top"].toggle(ticklabels=True, label=True)
ax.axis["top"].major_ticklabels.set_axis_direction("top")
ax.axis["top"].label.set_axis_direction("top")
ax.axis["top"].label.set_text("Correlation")
ax.axis["left"].set_axis_direction("bottom") # "X axis"
ax.axis["left"].label.set_text("Standard deviation")
ax.axis["right"].set_axis_direction("top") # "Y-axis"
ax.axis["right"].toggle(ticklabels=True)
ax.axis["right"].major_ticklabels.set_axis_direction(
"bottom" if extend else "left")
if self.smin:
ax.axis["bottom"].toggle(ticklabels=False, label=False)
else:
ax.axis["bottom"].set_visible(False) # Unused
self._ax = ax # Graphical axes
self.ax = ax.get_aux_axes(tr) # Polar coordinates
# Add reference point and stddev contour
l, = self.ax.plot([0], self.refstd, 'k*',
ls='', ms=10, label=label)
t = NP.linspace(0, self.tmax)
r = NP.zeros_like(t) + self.refstd
self.ax.plot(t, r, 'k--', label='_')
# Collect sample points for latter use (e.g. legend)
self.samplePoints = [l]
def add_sample(self, stddev, corrcoef, *args, **kwargs):
"""
Add sample (*stddev*, *corrcoeff*) to the Taylor
diagram. *args* and *kwargs* are directly propagated to the
`Figure.plot` command.
"""
l, = self.ax.plot(NP.arccos(corrcoef), stddev,
*args, **kwargs) # (theta, radius)
self.samplePoints.append(l)
return l
def add_grid(self, *args, **kwargs):
"""Add a grid."""
self._ax.grid(*args, **kwargs)
def add_contours(self, levels=5, **kwargs):
"""
Add constant centered RMS difference contours, defined by *levels*.
"""
rs, ts = NP.meshgrid(NP.linspace(self.smin, self.smax),
NP.linspace(0, self.tmax))
# Compute centered RMS difference
rms = NP.sqrt(self.refstd**2 + rs**2 - 2*self.refstd*rs*NP.cos(ts))
contours = self.ax.contour(ts, rs, rms, levels, **kwargs)
return contours
def test1():
"""Display a Taylor diagram in a separate axis."""
# Reference dataset
x = NP.linspace(0, 4*NP.pi, 100)
data = NP.sin(x)
refstd = data.std(ddof=1) # Reference standard deviation
# Generate models
m1 = data + 0.2*NP.random.randn(len(x)) # Model 1
m2 = 0.8*data + .1*NP.random.randn(len(x)) # Model 2
m3 = NP.sin(x-NP.pi/10) # Model 3
# Compute stddev and correlation coefficient of models
samples = NP.array([ [m.std(ddof=1), NP.corrcoef(data, m)[0, 1]]
for m in (m1, m2, m3)])
fig = PLT.figure(figsize=(10, 4))
ax1 = fig.add_subplot(1, 2, 1, xlabel='X', ylabel='Y')
# Taylor diagram
dia = TaylorDiagram(refstd, fig=fig, rect=122, label="Reference",
srange=(0.5, 1.5))
colors = PLT.matplotlib.cm.jet(NP.linspace(0, 1, len(samples)))
ax1.plot(x, data, 'ko', label='Data')
for i, m in enumerate([m1, m2, m3]):
ax1.plot(x, m, c=colors[i], label='Model %d' % (i+1))
ax1.legend(numpoints=1, prop=dict(size='small'), loc='best')
# Add the models to Taylor diagram
for i, (stddev, corrcoef) in enumerate(samples):
dia.add_sample(stddev, corrcoef,
marker='$%d$' % (i+1), ms=10, ls='',
mfc=colors[i], mec=colors[i],
label="Model %d" % (i+1))
# Add grid
dia.add_grid()
# Add RMS contours, and label them
contours = dia.add_contours(colors='0.5')
PLT.clabel(contours, inline=1, fontsize=10, fmt='%.2f')
# Add a figure legend
fig.legend(dia.samplePoints,
[ p.get_label() for p in dia.samplePoints ],
numpoints=1, prop=dict(size='small'), loc='upper right')
return dia
def test2():
"""
Climatology-oriented example (after iteration w/ Michael A. Rawlins).
"""
# Reference std
stdref = 48.491
# Samples std,rho,name
samples = [[25.939, 0.385, "Model A"],
[29.593, 0.509, "Model B"],
[33.125, 0.585, "Model C"],
[29.593, 0.509, "Model D"],
[71.215, 0.473, "Model E"],
[27.062, 0.360, "Model F"],
[38.449, 0.342, "Model G"],
[35.807, 0.609, "Model H"],
[17.831, 0.360, "Model I"]]
fig = PLT.figure()
dia = TaylorDiagram(stdref, fig=fig, label='Reference', extend=True)
dia.samplePoints[0].set_color('r') # Mark reference point as a red star
# Add models to Taylor diagram
for i, (stddev, corrcoef, name) in enumerate(samples):
dia.add_sample(stddev, corrcoef,
marker='$%d$' % (i+1), ms=10, ls='',
mfc='k', mec='k',
label=name)
# Add RMS contours, and label them
contours = dia.add_contours(levels=5, colors='0.5') # 5 levels in grey
PLT.clabel(contours, inline=1, fontsize=10, fmt='%.0f')
dia.add_grid() # Add grid
dia._ax.axis[:].major_ticks.set_tick_out(True) # Put ticks outward
# Add a figure legend and title
fig.legend(dia.samplePoints,
[ p.get_label() for p in dia.samplePoints ],
numpoints=1, prop=dict(size='small'), loc='upper right')
fig.suptitle("Taylor diagram", size='x-large') # Figure title
return dia
if __name__ == '__main__':
dia = test1()
dia = test2()
PLT.show()
#!/usr/bin/env python
__version__ = "Time-stamp: <2018-12-06 11:55:22 ycopin>"
__author__ = "Yannick Copin <[email protected]>"
"""
Example of use of TaylorDiagram. Illustration dataset courtesy of Michael
Rawlins.
Rawlins, M. A., R. S. Bradley, H. F. Diaz, 2012. Assessment of regional climate
model simulation estimates over the Northeast United States, Journal of
Geophysical Research (2012JGRD..11723112R).
"""
from taylorDiagram import TaylorDiagram
import numpy as NP
import matplotlib.pyplot as PLT
# Reference std
stdrefs = dict(winter=48.491,
spring=44.927,
summer=37.664,
autumn=41.589)
# Sample std,rho: Be sure to check order and that correct numbers are placed!
samples = dict(winter=[[17.831, 0.360, "CCSM CRCM"],
[27.062, 0.360, "CCSM MM5"],
[33.125, 0.585, "CCSM WRFG"],
[25.939, 0.385, "CGCM3 CRCM"],
[29.593, 0.509, "CGCM3 RCM3"],
[35.807, 0.609, "CGCM3 WRFG"],
[38.449, 0.342, "GFDL ECP2"],
[29.593, 0.509, "GFDL RCM3"],
[71.215, 0.473, "HADCM3 HRM3"]],
spring=[[32.174, -0.262, "CCSM CRCM"],
[24.042, -0.055, "CCSM MM5"],
[29.647, -0.040, "CCSM WRFG"],
[22.820, 0.222, "CGCM3 CRCM"],
[20.505, 0.445, "CGCM3 RCM3"],
[26.917, 0.332, "CGCM3 WRFG"],
[25.776, 0.366, "GFDL ECP2"],
[18.018, 0.452, "GFDL RCM3"],
[79.875, 0.447, "HADCM3 HRM3"]],
summer=[[35.863, 0.096, "CCSM CRCM"],
[43.771, 0.367, "CCSM MM5"],
[35.890, 0.267, "CCSM WRFG"],
[49.658, 0.134, "CGCM3 CRCM"],
[28.972, 0.027, "CGCM3 RCM3"],
[60.396, 0.191, "CGCM3 WRFG"],
[46.529, 0.258, "GFDL ECP2"],
[35.230, -0.014, "GFDL RCM3"],
[87.562, 0.503, "HADCM3 HRM3"]],
autumn=[[27.374, 0.150, "CCSM CRCM"],
[20.270, 0.451, "CCSM MM5"],
[21.070, 0.505, "CCSM WRFG"],
[25.666, 0.517, "CGCM3 CRCM"],
[35.073, 0.205, "CGCM3 RCM3"],
[25.666, 0.517, "CGCM3 WRFG"],
[23.409, 0.353, "GFDL ECP2"],
[29.367, 0.235, "GFDL RCM3"],
[70.065, 0.444, "HADCM3 HRM3"]])
# Colormap (see http://www.scipy.org/Cookbook/Matplotlib/Show_colormaps)
colors = PLT.matplotlib.cm.Set1(NP.linspace(0,1,len(samples['winter'])))
# Here set placement of the points marking 95th and 99th significance
# levels. For more than 102 samples (degrees freedom > 100), critical
# correlation levels are 0.195 and 0.254 for 95th and 99th
# significance levels respectively. Set these by eyeball using the
# standard deviation x and y axis.
#x95 = [0.01, 0.68] # For Tair, this is for 95th level (r = 0.195)
#y95 = [0.0, 3.45]
#x99 = [0.01, 0.95] # For Tair, this is for 99th level (r = 0.254)
#y99 = [0.0, 3.45]
x95 = [0.05, 13.9] # For Prcp, this is for 95th level (r = 0.195)
y95 = [0.0, 71.0]
x99 = [0.05, 19.0] # For Prcp, this is for 99th level (r = 0.254)
y99 = [0.0, 70.0]
rects = dict(winter=221,
spring=222,
summer=223,
autumn=224)
fig = PLT.figure(figsize=(11,8))
fig.suptitle("Precipitations", size='x-large')
for season in ['winter','spring','summer','autumn']:
dia = TaylorDiagram(stdrefs[season], fig=fig, rect=rects[season],
label='Reference')
dia.ax.plot(x95,y95,color='k')
dia.ax.plot(x99,y99,color='k')
# Add samples to Taylor diagram
for i,(stddev,corrcoef,name) in enumerate(samples[season]):
dia.add_sample(stddev, corrcoef,
marker='$%d$' % (i+1), ms=10, ls='',
#mfc='k', mec='k', # B&W
mfc=colors[i], mec=colors[i], # Colors
label=name)
# Add RMS contours, and label them
contours = dia.add_contours(levels=5, colors='0.5') # 5 levels
dia.ax.clabel(contours, inline=1, fontsize=10, fmt='%.1f')
# Tricky: ax is the polar ax (used for plots), _ax is the
# container (used for layout)
dia._ax.set_title(season.capitalize())
# Add a figure legend and title. For loc option, place x,y tuple inside [ ].
# Can also use special options here:
# http://matplotlib.sourceforge.net/users/legend_guide.html
fig.legend(dia.samplePoints,
[ p.get_label() for p in dia.samplePoints ],
numpoints=1, prop=dict(size='small'), loc='center')
fig.tight_layout()
PLT.savefig('test_taylor_4panel.png')
PLT.show()
@ycopin
Copy link
Author

ycopin commented Aug 29, 2025

I pushed the modified version to my repository MLDown; you can see it here.

Thanks for the heads up. It's nice to see that this old benign piece of code is still useful!

@krikru
Copy link

krikru commented Oct 28, 2025

I ended up placing the entire file including my changes in the public domain (as written in the repository's LICENSE.txt file).

@krikru
Copy link

krikru commented Oct 28, 2025

Btw, the paper in which I used the code is now published and is available here. In the diagrams (Figures 11 and 12), you can see an extra arc (the dashed grey arc), which I added to indicate where ML models trained with MSE loss tend to put their predictions, and the reason they tend to put them there is the following: For predictions that don't correlate perfectly with the ground truth (which they basically never do), there is going to be a prediction error. That error can be reduced by scaling the predictions (which the ML model can do easily)—which is akin to how you can apply a linear filter to reduce the amount of noise in a signal in signal processing—and the optimal scaling factor for a given correlation (i.e. the scaling factor that minimizes the MSE loss) is also the scaling factor that puts the data on the dashed grey arc in the Taylor diagram (although we chose to omit this explanation from the paper). This is especially clear in Figure 12.

@krikru
Copy link

krikru commented Oct 28, 2025

It's nice to see that this old benign piece of code is still useful!

It is nice that you chose to make it freely available so that other people can use it! :)

Do you want me to create a change request, btw?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment