Last active
August 29, 2015 14:07
-
-
Save yjfvictor/e12655ac3df4b4071def to your computer and use it in GitHub Desktop.
1273: 大数的位数
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* @author 叶剑飞 | |
* @file 1273.c | |
* @brief 1273: 大数的位数 | |
* @note http://125.221.232.253/JudgeOnline/problem.php?id=1273 | |
*/ | |
#include <stdio.h> | |
#include <stdlib.h> | |
#include <math.h> | |
/** | |
* @brief 圆周率 | |
*/ | |
#define PI 3.1415926535897932384626433832795028841971 | |
/** | |
* @brief 自然对数的底数 | |
*/ | |
#define e 2.718281828459045235360287471352 | |
/** | |
* @brief 得到指定数字阶乘的位数 | |
* @param[in] n 被阶乘数 | |
* @return 数字的阶乘的位数 | |
* | |
* @section 描述 | |
* | |
* Stirling公式: @f[ n! \approx \sqrt{2 \pi n } ( \frac{n}{e} )^n @f] | |
* | |
* 阶乘的位数: | |
* @f[ 1 + \log_{10} [\sqrt{2 \pi n } ( \frac{n}{e} )^n] @f] | |
* | |
* 化简,得 | |
* @f[ 1 + \log_{10} \sqrt{2 \pi n } + n \log_{10} ( \frac{n}{e} ) @f] | |
*/ | |
long long GetDigitCount(int n) | |
{ | |
long long digits = 1 + (int) (log10(sqrt(2 * PI * n)) + n * log10(n / e)); | |
return digits; | |
} | |
int main() | |
{ | |
int test_cases; | |
int n; | |
scanf("%d", &test_cases); | |
while (test_cases--) | |
{ | |
scanf("%d", &n); | |
printf("%lld\n", GetDigitCount(n)); | |
} | |
return EXIT_SUCCESS; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment