Created
August 26, 2015 01:14
-
-
Save yusugomori/fdc1d8a5f050caad01c2 to your computer and use it in GitHub Desktop.
simple Dropout
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package DeepLearning; | |
import java.util.Random; | |
import java.util.List; | |
import java.util.ArrayList; | |
public class Dropout { | |
public int N; | |
public int n_in; | |
public int[] hidden_layer_sizes; | |
public int n_out; | |
public int n_layers; | |
public HiddenLayer[] hiddenLayers; | |
public LogisticRegression logisticLayer; | |
public Random rng; | |
public Dropout(int N, int n_in, int[] hidden_layer_sizes, int n_out, Random rng, String activation) { | |
this.N = N; | |
this.n_in = n_in; | |
this.hidden_layer_sizes = hidden_layer_sizes; | |
this.n_layers = hidden_layer_sizes.length; | |
this.n_out = n_out; | |
this.hiddenLayers = new HiddenLayer[n_layers]; | |
if (rng == null) rng = new Random(1234); | |
this.rng = rng; | |
if (activation == null) activation = "ReLU"; | |
// construct multi-layer | |
int input_size; | |
for(int i=0; i<this.n_layers; i++) { | |
// layer_size | |
if(i == 0) { | |
input_size = n_in; | |
} else { | |
input_size = hidden_layer_sizes[i-1]; | |
} | |
// construct hiddenLayer | |
this.hiddenLayers[i] = new HiddenLayer(N, input_size, hidden_layer_sizes[i], null, null, rng, activation); | |
} | |
// construct logisticLayer | |
this.logisticLayer = new LogisticRegression(N, hidden_layer_sizes[this.n_layers-1], n_out); | |
} | |
public void train(int epochs, double[][] train_X, int[][] train_Y, boolean dropout, double p_dropout, double lr) { | |
List<int[]> dropout_masks; | |
List<double[]> layer_inputs; | |
double[] layer_input; | |
double[] layer_output = new double[0]; | |
for(int epoch=0; epoch<epochs; epoch++) { | |
for(int n=0; n<N; n++) { | |
dropout_masks = new ArrayList<>(n_layers); | |
layer_inputs = new ArrayList<>(n_layers+1); // +1 for logistic layer | |
// forward hiddenLayers | |
for(int i=0; i<n_layers; i++) { | |
if(i == 0) layer_input = train_X[n]; | |
else layer_input = layer_output.clone(); | |
layer_inputs.add(layer_input.clone()); | |
layer_output = new double[hidden_layer_sizes[i]]; | |
hiddenLayers[i].forward(layer_input, layer_output); | |
if(dropout) { | |
int[] mask; | |
mask = hiddenLayers[i].dropout(layer_output.length, p_dropout, rng); | |
for(int j=0; j<layer_output.length; j++) layer_output[j] *= mask[j]; | |
dropout_masks.add(mask.clone()); | |
} | |
} | |
// forward & backward logisticLayer | |
double[] logistic_layer_dy; // = new double[n_out]; | |
logistic_layer_dy = logisticLayer.train(layer_output, train_Y[n], lr); //, logistic_layer_dy); | |
layer_inputs.add(layer_output.clone()); | |
// backward hiddenLayers | |
double[] prev_dy = logistic_layer_dy; | |
double[][] prev_W; | |
double[] dy = new double[0]; | |
for(int i=n_layers-1; i>=0; i--) { | |
if(i == n_layers-1) { | |
prev_W = logisticLayer.W; | |
} else { | |
prev_dy = dy.clone(); | |
prev_W = hiddenLayers[i+1].W; | |
} | |
dy = new double[hidden_layer_sizes[i]]; | |
hiddenLayers[i].backward(layer_inputs.get(i), dy, layer_inputs.get(i+1), prev_dy, prev_W, lr); | |
if(dropout) { | |
for(int j=0; j<dy.length; j++) { | |
dy[j] *= dropout_masks.get(i)[j]; | |
} | |
} | |
} | |
} | |
} | |
} | |
public void pretest(double p_dropout) { | |
for(int i=0; i<n_layers; i++) { | |
int in; | |
int out; | |
if (i == 0) in = n_in; | |
else in = hidden_layer_sizes[i]; | |
if (i == n_layers - 1) out = n_out; | |
else out = hidden_layer_sizes[i+1]; | |
for (int l = 0; l < out; l++) { | |
for (int m = 0; m < in; m++) { | |
hiddenLayers[i].W[l][m] *= 1 - p_dropout; | |
} | |
} | |
} | |
} | |
public void predict(double[] x, double[] y) { | |
double[] layer_input; | |
double[] layer_output = new double[0]; | |
for(int i=0; i<n_layers; i++) { | |
if(i == 0) layer_input = x; | |
else layer_input = layer_output.clone(); | |
layer_output = new double[hidden_layer_sizes[i]]; | |
hiddenLayers[i].forward(layer_input, layer_output); | |
} | |
logisticLayer.predict(layer_output, y); | |
} | |
private static void test_dropout() { | |
Random rng = new Random(123); | |
double learning_rate = 0.1; | |
int n_epochs = 5000; | |
int train_N = 4; | |
int test_N = 4; | |
int n_in = 2; | |
int[] hidden_layer_sizes = {10, 10}; | |
int n_out = 2; | |
boolean dropout = true; | |
double p_dropout = 0.5; | |
double[][] train_X = { | |
{0., 0.}, | |
{0., 1.}, | |
{1., 0.}, | |
{1., 1.}, | |
}; | |
int[][] train_Y = { | |
{0, 1}, | |
{1, 0}, | |
{1, 0}, | |
{0, 1}, | |
}; | |
// construct Dropout | |
Dropout classifier = new Dropout(train_N, n_in, hidden_layer_sizes, n_out, rng, "ReLU"); | |
// train | |
classifier.train(n_epochs, train_X, train_Y, dropout, p_dropout, learning_rate); | |
// pretest | |
if(dropout) classifier.pretest(p_dropout); | |
// test data | |
double[][] test_X = { | |
{0., 0.}, | |
{0., 1.}, | |
{1., 0.}, | |
{1., 1.}, | |
}; | |
double[][] test_Y = new double[test_N][n_out]; | |
// test | |
for(int i=0; i<test_N; i++) { | |
classifier.predict(test_X[i], test_Y[i]); | |
for(int j=0; j<n_out; j++) { | |
System.out.print(test_Y[i][j] + " "); | |
} | |
System.out.println(); | |
} | |
} | |
public static void main(String[] args) { | |
test_dropout(); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment