Created
September 6, 2018 21:55
-
-
Save zaidalyafeai/6ce0c87cf86138f1457790dbd27914b0 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def transform(image, scale): | |
r = image | |
if a.flip: | |
r = tf.image.random_flip_left_right(r, seed=seed) | |
# area produces a nice downscaling, but does nearest neighbor for upscaling | |
# assume we're going to be doing downscaling here | |
r = tf.image.resize_images(r, [scale[0], scale[0]], method=tf.image.ResizeMethod.AREA) | |
offset = tf.cast(tf.floor(tf.random_uniform([2], 0, tf.cast(scale[0], dtype=tf.float32) - CROP_SIZE + 1, seed=seed)), dtype=tf.int32) | |
if a.scale_size > CROP_SIZE: | |
r = tf.image.crop_to_bounding_box(r, offset[0], offset[1], CROP_SIZE, CROP_SIZE) | |
elif a.scale_size < CROP_SIZE: | |
raise Exception("scale size cannot be less than crop size") | |
return r | |
scale = tf.random_uniform([1], minval=286, maxval=300, dtype=tf.int32) | |
with tf.name_scope("input_images"): | |
input_images = transform(inputs, scale) | |
with tf.name_scope("target_images"): | |
target_images = transform(targets, scale) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment