Last active
August 29, 2015 14:02
-
-
Save zblz/e81478619ba15328fb9d to your computer and use it in GitHub Desktop.
Quantity speed test for gammafit.ProtonOZM
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
## Constants and units | |
from astropy import units as u | |
# import constant values from astropy.constants | |
import astropy.constants as const | |
from astropy.constants import c, G, m_e, h, hbar, k_B, R_sun, sigma_sb, e, m_p | |
e = e.gauss | |
mec2 = (m_e*c**2).cgs | |
# variables for integrand | |
mp = (m_p*c**2) | |
m_pi = 1.349766e-4*u.TeV # TeV/c2 | |
erad = (e**2./mec2).cgs | |
sigt = (8*np.pi/3)*erad**2 | |
ar = (4*sigma_sb/c).cgs | |
class ProtonOZM(object): | |
def __init__(self): | |
self.norm=1.0 | |
self.index=2.1 | |
self._norm_energy=1.0 | |
def Jp(self, Ep): | |
""" | |
Particle distribution function [1/TeV] | |
""" | |
Jp = self.norm*(Ep/self._norm_energy)**-self.index | |
return Jp | |
def Fgamma(self, x, Ep): | |
""" | |
KAB06 Eq.58 | |
Parameters | |
---------- | |
x : Egamma/Eprot | |
Ep : Eprot [TeV] | |
""" | |
L = np.log(Ep) | |
B = 1.30+0.14*L+0.011*L**2 # Eq59 | |
beta = (1.79+0.11*L+0.008*L**2)**-1 # Eq60 | |
k = (0.801+0.049*L+0.014*L**2)**-1 # Eq61 | |
xb = x**beta | |
F1 = B*(np.log(x)/x)*((1-xb)/(1+k*xb*(1-xb)))**4 | |
F2 = 1./np.log(x)-(4*beta*xb)/(1-xb)-(4*k*beta*xb*(1-2*xb))/(1+k*xb*(1-xb)) | |
return F1*F2 | |
def sigma_inel(self, Ep): | |
""" | |
Inelastic cross-section for p-p interaction. KAB06 Eq. 73, 79 | |
""" | |
L = np.log(Ep) | |
sigma = 34.3 + 1.88*L + 0.25*L**2 | |
if Ep <= 0.1: | |
Eth = 1.22e-3 | |
sigma *= (1-(Eth/Ep)**4)**2 * heaviside(Ep-Eth) | |
return sigma*1e-27 # convert from mbarn to cm2 | |
def _photon_integrand(self, x, Egamma): | |
""" | |
Integrand of Eq. 72 | |
""" | |
try: | |
return self.sigma_inel(Egamma/x)*self.Jp(Egamma/x) \ | |
*self.Fgamma(x, Egamma/x)/x | |
except ZeroDivisionError: | |
return np.nan | |
def calc_hiE_spec(self,Egamma): | |
from scipy.integrate import quad | |
Egamma = Egamma.to('TeV').value | |
result = c.cgs.value*quad(self._photon_integrand, 0., 1., args=Egamma, | |
epsrel=1e-3, epsabs=0)[0] | |
return result * u.Unit('1/(s TeV)') | |
# variables for integrand | |
_c=c.cgs.value | |
_Kpi=0.17 | |
_mp = (m_p*c**2).to('TeV').value | |
_m_pi = 1.349766e-4 # TeV/c2 | |
def _delta_integrand(self,Epi): | |
Ep0 = self._mp+Epi/self._Kpi | |
qpi = self._c/self._Kpi*self.sigma_inel(Ep0)*self.Jp(Ep0) | |
return qpi/np.sqrt(Epi**2+self._m_pi**2) | |
def calc_loE_spec(self,Egamma): | |
""" | |
Delta-functional approximation for low energies Egamma < 0.1 TeV | |
""" | |
from scipy.integrate import quad | |
Egamma = Egamma.to('TeV').value | |
Epimin = Egamma+self._m_pi**2/(4*Egamma) | |
result = 2*quad(self._delta_integrand, Epimin, np.inf, epsrel=1e-3, | |
epsabs=0)[0] | |
return result * u.Unit('1/(s TeV)') | |
class QuantityProtonOZM(object): | |
def __init__(self): | |
self.norm=1.0 | |
self.index=2.1 | |
self.norm_energy=1.0*u.TeV | |
def Jp(self, Ep): | |
""" | |
Particle distribution function [1/TeV] | |
""" | |
Jp = self.norm*(Ep/self.norm_energy).decompose().value**-self.index | |
return Jp | |
def Fgamma(self, x, Ep): | |
""" | |
KAB06 Eq.58 | |
Parameters | |
---------- | |
x : Egamma/Eprot | |
Ep : Eprot [TeV] | |
""" | |
L = np.log(Ep.to('TeV').value) | |
B = 1.30+0.14*L+0.011*L**2 # Eq59 | |
beta = (1.79+0.11*L+0.008*L**2)**-1 # Eq60 | |
k = (0.801+0.049*L+0.014*L**2)**-1 # Eq61 | |
xb = x**beta | |
F1 = B*(np.log(x)/x)*((1-xb)/(1+k*xb*(1-xb)))**4 | |
F2 = 1./np.log(x)-(4*beta*xb)/(1-xb)-(4*k*beta*xb*(1-2*xb))/(1+k*xb*(1-xb)) | |
return F1*F2 | |
def sigma_inel(self, Ep): | |
""" | |
Inelastic cross-section for p-p interaction. KAB06 Eq. 73, 79 | |
""" | |
L = np.log(Ep.to('TeV').value) | |
sigma = 34.3 + 1.88*L + 0.25*L**2 | |
if Ep <= 0.1*u.TeV: | |
Eth = 1.22e-3*u.TeV | |
sigma *= (1-(Eth/Ep).decompose().value**4)**2 * heaviside(Ep-Eth) | |
return sigma*1e-27 # convert from mbarn to cm2 | |
def _photon_integrand(self, x, Egamma): | |
""" | |
Integrand of Eq. 72 | |
""" | |
try: | |
return self.sigma_inel(Egamma/x)*self.Jp(Egamma/x) \ | |
*self.Fgamma(x, Egamma/x)/x | |
except ZeroDivisionError: | |
return np.nan | |
def calc_hiE_spec(self,Egamma): | |
from scipy.integrate import quad | |
result = c.cgs.value*quad(self._photon_integrand, 0., 1., args=Egamma, | |
epsrel=1e-3, epsabs=0)[0] | |
return result * u.Unit('1/(s TeV)') | |
def _delta_integrand(self,Epi): | |
Kpi=0.17 | |
Ep0 = mp+Epi*u.TeV/Kpi | |
qpi = c.cgs.value/Kpi*self.sigma_inel(Ep0)*self.Jp(Ep0) | |
return qpi/np.sqrt((Epi*u.TeV)**2+m_pi**2).value | |
def calc_loE_spec(self,Egamma): | |
""" | |
Delta-functional approximation for low energies Egamma < 0.1 TeV | |
""" | |
from scipy.integrate import quad | |
# scalar needed for quad | |
Epimin = (Egamma+m_pi**2/(4*Egamma)).to('TeV').value | |
result = 2*quad(self._delta_integrand, Epimin, np.inf, epsrel=1e-3, | |
epsabs=0)[0] | |
return result * u.Unit('1/(s TeV)') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment