2025451021
์ธ๊ณต์ง๋ฅํ๊ณผ
๊น์์
On the Effect of Negative-Pair Variance in Contrastive Learning and a VRN-Based Solution
#1. | |
์๋ ํ์ธ์. 10์กฐ ๋ฐํ๋ฅผ ์์ํ๊ฒ ์ต๋๋ค. | |
์ ํฌ๋ "์์ฑ-์ด๋ฏธ์ง ๋ฉํฐ๋ชจ๋ฌ์ ํ์ฉํ์ฌ ์์ฑ๊ณผ ๋งค์นญ๋๋ ์ธ๋ฌผ์ ์ถ๋ก ํ๋ AI ๋ชจ๋ธ"์ด๋ผ๋ ์ฃผ์ ๋ก ์ธ๋ฏธ๋ ์ฐ๊ตฌ๋ฅผ ์งํํ๊ณ ์ ํฉ๋๋ค. | |
#2. | |
๋จผ์ ํ๋ก์ ํธ ๊ฐ์๋ฅผ ์ค๋ช ๋๋ฆฐ ํ, ๋ด์ฉ๊ณผ ์์ฉ, ์ผ์ ์์ผ๋ก ๋ฐํ๋ฅผ ์งํํ๊ฒ ์ต๋๋ค. | |
#3. |
$$ ๋ฅ๋ฌ๋ \subset ๋จธ์ ๋ฌ๋ \subset ์ธ๊ณต์ง๋ฅ$$3
์ธ๊ณต์ง๋ฅ์ ์ธ๊ฐ์ฒ๋ผ ์ฌ๊ณ ํ๊ณ ํ๋ํ๋ ๊ธฐ๊ณ๋ฅผ ๋ง๋๋ ๊ธฐ์ ์ ๋ฐ์ ์๋ฏธํ๋ค.
import random | |
import numpy as np | |
from visualize_train import draw_value_image, draw_policy_image | |
# left, right, up, down | |
ACTIONS = [np.array([0, -1]), | |
np.array([0, 1]), | |
np.array([-1, 0]), |
import numpy as np | |
from numpy.linalg import inv | |
from visualize_train import draw_value_image, draw_policy_image | |
# left, right, up, down | |
ACTIONS = [np.array([0, -1]), | |
np.array([0, 1]), | |
np.array([-1, 0]), | |
np.array([1, 0])] |
"""Showcase of flying arrows that can stick to objects in a somewhat | |
realistic looking way. | |
""" | |
import sys | |
from typing import List | |
import pygame | |
import pymunk |
import torch | |
from torch import initial_seed | |
directs = [(1, 0), (-1, 0), (0, 1), (0, -1)] # [down, up, right, left] | |
inf = int(1e9) | |
def initialize_policy(width, height, terminals): | |
policy = torch.full((height, width, 4), 0.0) | |
for y in range(height): | |
for x in range(width): |