Created
June 17, 2019 13:21
-
-
Save zoq/87070ff2a4bf769d2264527b2f67b035 to your computer and use it in GitHub Desktop.
convnet_example.hpp
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
arma::cube imageA(28, 28, 3); | |
imageA.fill(1.0); | |
arma::cube imageB(28, 28, 3); | |
imageB.fill(0.5); | |
arma::mat imageData(28*28*3, 100); | |
imageData.fill(1.0); | |
arma::mat imageLabels = arma::zeros<arma::mat>(1, 100); | |
for (size_t i = 0; i < 100; i++) | |
{ | |
if (i < 50) | |
{ | |
imageLabels(i) = 1; | |
} | |
else | |
{ | |
imageLabels(i) = 2; | |
} | |
} | |
for (size_t i = 0; i < 50; i++) | |
imageData.col(i) = arma::vectorise(imageB); | |
FFN<NegativeLogLikelihood<>, RandomInitialization> model; | |
model.Add<Convolution<> >(1 * 3, 8 * 3, 5, 5, 1, 1, 0, 0, 28, 28); | |
model.Add<ReLULayer<> >(); | |
model.Add<MaxPooling<> >(8, 8, 2, 2); | |
model.Add<Convolution<> >(8 * 3, 12 * 3, 2, 2); | |
model.Add<ReLULayer<> >(); | |
model.Add<MaxPooling<> >(2, 2, 2, 2); | |
model.Add<Linear<> >(192 * 3, 20); | |
model.Add<ReLULayer<> >(); | |
model.Add<Linear<> >(20, 10); | |
model.Add<ReLULayer<> >(); | |
model.Add<Linear<> >(10, 2); | |
model.Add<LogSoftMax<> >(); | |
// Train for only 8 epochs. | |
ens::RMSProp opt(0.001, 1, 0.88, 1e-8, 8 * nPoints, -1); | |
double objVal = model.Train(imageData, imageLabels, opt); | |
// Test that objective value returned by FFN::Train() is finite. | |
BOOST_REQUIRE_EQUAL(std::isfinite(objVal), true); | |
arma::mat predictionTemp; | |
model.Predict(imageData, predictionTemp); | |
arma::mat prediction = arma::zeros<arma::mat>(1, predictionTemp.n_cols); | |
for (size_t i = 0; i < predictionTemp.n_cols; ++i) | |
{ | |
prediction(i) = arma::as_scalar(arma::find( | |
arma::max(predictionTemp.col(i)) == predictionTemp.col(i), 1)) + 1; | |
} | |
size_t correct = 0; | |
for (size_t i = 0; i < X.n_cols; i++) | |
{ | |
if (prediction(i) == imageLabels(i)) | |
correct++; | |
} | |
double classificationError = 1 - double(correct) / X.n_cols; | |
std::cout << classificationError << std::endl; | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment