Created
October 3, 2012 12:03
Revisions
-
zweizeichen created this gist
Oct 3, 2012 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,38 @@ - extends "base.haml" - load cache - load humanize - block title element43 - Station - Best Margins - block content %h1 {{station.name}} .row-fluid .span12 %table.table.table-striped.table-condensed %thead %tr %th %th Daily Volume %th Best Ask %th Best Bid %th Margin %tbody - for item in top_margins %tr %td %a{'href':'/market/region/{{station.region.id}}/{{item.type.id}}/'} {{item.type.name}} %td {{item.volume|intcomma}} %td {{item.top_ask|intcomma}} ISK %td {{item.top_bid|intcomma}} ISK %td {{item.margin|floatformat:2}} % This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,64 @@ def margins(request, station_id = 60003760): """ Generates a list like http://goonmetrics.com/importing/ """ # Get station object - default to CNAP if something goes wrong try: station = StaStation.objects.get(id = station_id) except: station_id = 60003760 station = StaStation.objects.get(id = station_id) # Get all orders grouped by type top_ask = Orders.objects.filter(stastation = station, is_bid = False).values('invtype').annotate(min_price=Min('price')) top_bid = Orders.objects.filter(stastation = station, is_bid = True).values('invtype').annotate(max_price=Max('price')) # Get re-structured dicts and sets ask = {} bid = {} for item in top_ask: ask[item['invtype']] = item['min_price'] ask_set = set(ask) for item in top_bid: bid[item['invtype']] = item['max_price'] bid_set = set(bid) # Get types with both buy and sell orders types = ask_set.intersection(bid_set) # Store margins top_margins = [] for invtype in types: margin = ((ask[invtype] / bid[invtype]) * 100) try: volume = ast.literal_eval(History.objects.get(mapregion = station.region, invtype_id = invtype).history_data).itervalues().next()[4] except: volume = 0 score = volume * margin # Filter Junk if (margin > 0) and (margin < 10000): top_margins.append({'type': invtype, 'margin': margin, 'score': score, 'volume':volume}) # Sort margins top_margins = sorted(top_margins, key=lambda k: k['score']) top_margins.reverse() del top_margins[100:] # Take top 50 margins for margin in top_margins: margin['type'] = InvType.objects.get(id = margin['type']) margin['top_ask'] = Orders.objects.filter(stastation = station, is_bid = False, invtype_id = margin['type']).aggregate(Min('price'))['price__min'] margin['top_bid'] = Orders.objects.filter(stastation = station, is_bid = True, invtype_id = margin['type']).aggregate(Max('price'))['price__max'] rcontext = RequestContext(request, {'station':station, 'top_margins':top_margins}) return render_to_response('trading/station/station.haml', rcontext)