Created
April 17, 2018 19:51
-
-
Save zyxue/37c7222cc264d5c2d70ba589fcc0ae57 to your computer and use it in GitHub Desktop.
Train a single-neuron RNN to compare performance of vanilla RNN and LSTM on information latching
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
import numpy as np | |
from keras.models import Model | |
from keras.layers import Input, LSTM, Dense, SimpleRNN | |
N = 10000 | |
num_repeats = 30 | |
num_epochs = 5 | |
# sequence length options | |
lens = [2, 5, 8, 10, 15, 20, 25, 30] + np.arange(30, 210, 10).tolist() | |
res = {} | |
for (RNN_CELL, key) in zip([SimpleRNN, LSTM], ['srnn', 'lstm']): | |
res[key] = {} | |
print(key, end=': ') | |
for seq_len in lens: | |
print(seq_len, end=',') | |
xs = np.zeros((N, seq_len)) | |
ys = np.zeros(N) | |
# construct input data | |
positive_indexes = np.arange(N // 2) | |
negative_indexes = np.arange(N // 2, N) | |
xs[positive_indexes, 0] = 1 | |
ys[positive_indexes] = 1 | |
xs[negative_indexes, 0] = -1 | |
ys[negative_indexes] = 0 | |
noise = np.random.normal(loc=0, scale=0.1, size=(N, seq_len)) | |
train_xs = (xs + noise).reshape(N, seq_len, 1) | |
train_ys = ys | |
# repeat each experiments multiple times | |
hists = [] | |
for i in range(num_repeats): | |
inputs = Input(shape=(None, 1), name='input') | |
rnn = RNN_CELL(1, input_shape=(None, 1), name='rnn')(inputs) | |
out = Dense(2, activation='softmax', name='output')(rnn) | |
model = Model(inputs, out) | |
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) | |
hist = model.fit(train_xs, train_ys, epochs=num_epochs, shuffle=True, validation_split=0.2, batch_size=16, verbose=0) | |
hists.append(hist.history['val_acc'][-1]) | |
res[key][seq_len] = hists | |
print() | |
fig = plt.figure() | |
ax = fig.add_subplot(111) | |
ax.plot(pd.DataFrame.from_dict(res['lstm']).mean(), label='lstm') | |
ax.plot(pd.DataFrame.from_dict(res['srnn']).mean(), label='srnn') | |
ax.legend() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment