Last active
January 10, 2024 02:36
-
-
Save colbyford/184097b0ec37b2b35667dab2da57d349 to your computer and use it in GitHub Desktop.
SparkML Linear Regression Script with Cross-Validation and Parameter Sweep
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
######################################## | |
## Title: Spark MLlib Linear Regression Script, with Cross-Validation and Parameter Sweep | |
## Language: PySpark | |
## Author: Colby T. Ford, Ph.D. | |
######################################## | |
from pyspark.ml.regression import LinearRegression | |
from pyspark.ml.tuning import ParamGridBuilder, CrossValidator | |
from pyspark.ml.evaluation import RegressionEvaluator | |
# Create initial LinearRegression model | |
lr = LinearRegression(labelCol="label", featuresCol="features") | |
# Create ParamGrid for Cross Validation | |
lrparamGrid = (ParamGridBuilder() | |
.addGrid(lr.regParam, [0.001, 0.01, 0.1, 0.5, 1.0, 2.0]) | |
# .addGrid(lr.regParam, [0.01, 0.1, 0.5]) | |
.addGrid(lr.elasticNetParam, [0.0, 0.25, 0.5, 0.75, 1.0]) | |
# .addGrid(lr.elasticNetParam, [0.0, 0.5, 1.0]) | |
.addGrid(lr.maxIter, [1, 5, 10, 20, 50]) | |
# .addGrid(lr.maxIter, [1, 5, 10]) | |
.build()) | |
# Evaluate model | |
lrevaluator = RegressionEvaluator(predictionCol="prediction", labelCol="label", metricName="rmse") | |
# Create 5-fold CrossValidator | |
lrcv = CrossValidator(estimator = lr, | |
estimatorParamMaps = lrparamGrid, | |
evaluator = lrevaluator, | |
numFolds = 5) | |
# Run cross validations | |
lrcvModel = lrcv.fit(train) | |
print(lrcvModel) | |
# Get Model Summary Statistics | |
lrcvSummary = lrcvModel.bestModel.summary | |
print("Coefficient Standard Errors: " + str(lrcvSummary.coefficientStandardErrors)) | |
print("P Values: " + str(lrcvSummary.pValues)) # Last element is the intercept | |
# Use test set here so we can measure the accuracy of our model on new data | |
lrpredictions = lrcvModel.transform(test) | |
# cvModel uses the best model found from the Cross Validation | |
# Evaluate best model | |
print('RMSE:', lrevaluator.evaluate(lrpredictions)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Line 39 has correction:
lrcvSummary = lrcvModel.bestModel.stages[-1].summary