Last active
January 4, 2016 03:09
-
-
Save daisukekobayashi/8559509 to your computer and use it in GitHub Desktop.
Phase-only correlation in python
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#! /usr/bin/env python | |
# -*- coding: utf-8 | |
import numpy | |
import scipy, scipy.fftpack | |
from numpy import pi, sin, cos | |
from scipy.optimize import leastsq | |
def zero_padding(src, dstshape, pos = (0, 0)): | |
y, x = pos | |
dst = numpy.zeros(dstshape) | |
dst[y:src.shape[0] + y, x:src.shape[1] + x] = src | |
return dst | |
def pocfunc_model(alpha, delta1, delta2, r, u): | |
N1, N2 = r.shape | |
V1, V2 = map(lambda x: 2 * x + 1, u) | |
return lambda n1, n2: alpha / (N1 * N2) * sin((n1 + delta1) * V1 / N1 * pi) * sin((n2 + delta2) * V2 / N2 * pi)\ | |
/ (sin((n1 + delta1) * pi / N1) * sin((n2 + delta2) * pi / N2)) | |
def pocfunc(f, g, windowfunc = numpy.hanning, withlpf = True): | |
m = numpy.floor(map(lambda x: x / 2.0, f.shape)) | |
u = map(lambda x: x / 2.0, m) | |
# hanning window | |
hy = windowfunc(f.shape[0]) | |
hx = windowfunc(f.shape[1]) | |
hw = hy.reshape(hy.shape[0], 1) * hx | |
f = f * hw | |
g = g * hw | |
# compute 2d fft | |
F = scipy.fftpack.fft2(f) | |
G = scipy.fftpack.fft2(g) | |
G_ = numpy.conj(G) | |
R = F * G_ / numpy.abs(F * G_) | |
if withlpf == True: | |
R = scipy.fftpack.fftshift(R) | |
lpf = numpy.ones(map(lambda x: x + 1.0, m)) | |
lpf = zero_padding(lpf, f.shape, u) | |
R = R * lpf | |
R = scipy.fftpack.fftshift(R) | |
return scipy.fftpack.fftshift(numpy.real(scipy.fftpack.ifft2(R))) | |
def poc(f, g, fitting_shape = (9, 9)): | |
# compute phase-only correlation | |
center = map(lambda x: x / 2.0, f.shape) | |
m = numpy.floor(map(lambda x: x / 2.0, f.shape)) | |
u = map(lambda x: x / 2.0, m) | |
r = pocfunc(f, g) | |
# least-square fitting | |
max_pos = numpy.argmax(r) | |
peak = (max_pos / f.shape[1], max_pos % f.shape[1]) | |
max_peak = r[peak[0], peak[1]] | |
mf = numpy.floor(map(lambda x: x / 2.0, fitting_shape)) | |
fitting_area = r[peak[0] - mf[0] : peak[0] + mf[0] + 1,\ | |
peak[1] - mf[1] : peak[1] + mf[1] + 1] | |
p0 = [0.5, -(peak[0] - m[0]) - 0.02, -(peak[1] - m[1]) - 0.02] | |
y, x = numpy.mgrid[-mf[0]:mf[0] + 1, -mf[1]:mf[1] + 1] | |
y = y + peak[0] - m[0] | |
x = x + peak[1] - m[1] | |
errorfunction = lambda p: numpy.ravel(pocfunc_model(p[0], p[1], p[2], r, u)(y, x) - fitting_area) | |
plsq = leastsq(errorfunction, p0) | |
return (plsq[0][0], plsq[0][1], plsq[0][2]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment