Created
December 24, 2025 20:45
-
-
Save davidmezzetti/2265e308f9100336698103e9c2523c80 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # | |
| # pip install ai-edge-torch txtai | |
| # | |
| # See https://github.com/google-ai-edge/ai-edge-torch | |
| import torch | |
| import ai_edge_torch | |
| import numpy as np | |
| from ai_edge_torch.generative.quantize import quant_attrs, quant_recipes | |
| from torch import nn | |
| from transformers import AutoTokenizer | |
| from txtai.models import PoolingFactory | |
| class Pooling(nn.Module): | |
| def __init__(self, path, device, **kwargs): | |
| super().__init__() | |
| # Create pooling method based on configuration | |
| self.model = PoolingFactory.create({"path": path, "device": device, "modelargs": kwargs}) | |
| # pylint: disable=W0221 | |
| def forward(self, input_ids=None, attention_mask=None, token_type_ids=None): | |
| # Build list of arguments dynamically since some models take token_type_ids | |
| # and others don't | |
| inputs = {"input_ids": input_ids, "attention_mask": attention_mask} | |
| if token_type_ids is not None: | |
| inputs["token_type_ids"] = token_type_ids | |
| return self.model.forward(**inputs) | |
| def export(): | |
| path = "neuml/biomedbert-hash-nano-embeddings" | |
| model = Pooling(path, "cpu", trust_remote_code=True).eval() | |
| # Sample inputs | |
| maxlength = 64 | |
| inputs = ( | |
| torch.ones(1, maxlength, dtype=torch.long), # tokens | |
| torch.ones(1, maxlength, dtype=torch.long), # attention_mask | |
| torch.ones(1, maxlength, dtype=torch.long), # token_type_ids | |
| ) | |
| # INT8 Quantization | |
| config = quant_recipes.full_dynamic_recipe( | |
| mcfg=model.model.model.config, | |
| weight_dtype=quant_attrs.Dtype.INT8, | |
| ) | |
| # Convert to tflite | |
| model = ai_edge_torch.convert( | |
| model, inputs, quant_config=config | |
| ) | |
| model.export("biomedbert-hash-nano-embeddings.tflite") | |
| def test(): | |
| def tokenize(text): | |
| inputs = tokenizer(text, return_tensors="np", padding="max_length", max_length=64) | |
| return [inputs[key] for key in ["input_ids", "attention_mask", "token_type_ids"]] | |
| # Load tflite model | |
| tokenizer = AutoTokenizer.from_pretrained("neuml/biomedbert-hash-nano-embeddings") | |
| model = ai_edge_torch.load("biomedbert-hash-nano-embeddings.tflite") | |
| # Embed query | |
| data = model(*tokenize("cancer")) | |
| # Embed doc | |
| data2 = model(*tokenize("tumor")) | |
| # Normalize and compute dot product | |
| data /= np.linalg.norm(data, axis=1)[:, np.newaxis] | |
| data2 /= np.linalg.norm(data2, axis=1)[:, np.newaxis] | |
| print(np.dot(data[0], data2.T)) | |
| # [0.8580084] | |
| export() | |
| test() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment