Created
June 9, 2025 11:17
-
-
Save gaxiiiiiiiiiiii/1028f1104fc7abbdde01d28c399c106e to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import Mathlib.tactic | |
open CategoryTheory | |
lemma Functor.hcongr [Category X] [Category Y] | |
{a b c d : X} {f : a ⟶ b} {g : c ⟶ d} | |
(F : X ⥤ Y) (H : HEq f g) (Eac : a = c) (Ebd : b = d): | |
HEq (F.map f) (F.map g) | |
:= by | |
subst c d | |
rcases H | |
rfl | |
section Map | |
structure Adjunction.preMap | |
[Category X] [Category X'] [Category A] [Category A'] | |
(F : X ⥤ A) (G : A ⥤ X) (F' : X' ⥤ A') (G' : A' ⥤ X') | |
where | |
domMap : X ⥤ X' | |
codMap : A ⥤ A' | |
left_comm : F ⋙ codMap = domMap ⋙ F' | |
right_comm : G ⋙ domMap = codMap ⋙ G' | |
section cast | |
variable [Category X] [Category X'] [Category A] [Category A'] | |
variable {F : X ⥤ A} {F' : X' ⥤ A'} {G : A ⥤ X} {G' : A' ⥤ X'} | |
variable (M : Adjunction.preMap F G F' G') | |
lemma Adjunction.preMap.left_comm_obj (x : X) : | |
M.codMap.obj (F.obj x) = F'.obj (M.domMap.obj x) := by | |
rw [<- Functor.comp_obj, M.left_comm, Functor.comp_obj] | |
lemma Adjunction.preMap.right_comm_obj (a : A) : | |
M.domMap.obj (G.obj a) = G'.obj (M.codMap.obj a) := by | |
rw [<- Functor.comp_obj, M.right_comm, Functor.comp_obj] | |
lemma Adjunction.preMap.domMap_comm : | |
F ⋙ G ⋙ M.domMap = M.domMap ⋙ F' ⋙ G' | |
:= by | |
rw [M.right_comm, <- Functor.assoc, M.left_comm, Functor.assoc] | |
lemma Adjunction.preMap.codMap_comm : | |
G ⋙ F ⋙ M.codMap = M.codMap ⋙ G' ⋙ F' | |
:= by | |
rw [M.left_comm, <- Functor.assoc, M.right_comm, Functor.assoc] | |
variable (φ : F ⊣ G) (φ' : F' ⊣ G') | |
def Adjunction.preMap.unit_comm := | |
(whiskerRight φ.unit M.domMap) = (whiskerLeft M.domMap φ'.unit) ≫ (eqToHom M.domMap_comm.symm) | |
def Adjunction.preMap.counit_comm := | |
(whiskerRight φ.counit M.codMap) = (eqToHom M.codMap_comm) ≫ (whiskerLeft M.codMap φ'.counit) | |
def Adjunction.preMap.homEquiv_comm (x : X) (a : A) (f : F.obj x ⟶ a) := | |
(M.domMap.map ((φ.homEquiv x a) f)) ≫ eqToHom (M.right_comm_obj a) = | |
((φ'.homEquiv (M.domMap.obj x) (M.codMap.obj a))) (((eqToHom (M.left_comm_obj x).symm) ≫ (M.codMap.map f))) | |
lemma Adjunction.preMap.homEquiv_comm_iff_unit_comm : | |
(∀ x a f , M.homEquiv_comm φ φ' x a f) ↔ M.unit_comm φ φ' | |
:= by | |
unfold homEquiv_comm unit_comm | |
constructor<;> intro H | |
· ext x; simp | |
have Hx := H x (F.obj x) (𝟙 (F.obj x)); simp at Hx | |
rw [φ.homEquiv_id x] at Hx | |
have E : | |
M.domMap.map (φ.unit.app x) ≫ eqToHom (right_comm_obj M (F.obj x)) ≫ eqToHom (right_comm_obj M (F.obj x)).symm = | |
(φ'.homEquiv (M.domMap.obj x) (M.codMap.obj (F.obj x))) (eqToHom (homEquiv_comm._proof_2 M x)) ≫ eqToHom (right_comm_obj M (F.obj x)).symm | |
:= by rw [<- Hx]; simp | |
simp at E; rw [E]; clear E | |
rw [<- (φ'.homEquiv_id (M.domMap.obj x))] | |
congr<;> try rw [M.left_comm_obj] | |
· exact eqToHom_heq_id_dom _ _ (homEquiv_comm._proof_2 M x) | |
· apply proof_irrel_heq | |
· rw [<- Functor.comp_obj, <- Functor.comp_obj, domMap_comm]; simp | |
· rw [<- Functor.comp_obj, <- Functor.comp_obj, domMap_comm]; simp | |
· intro x a f | |
rw [φ.homEquiv_apply, φ'.homEquiv_apply]; simp | |
injection H with H | |
have Hx := congr_fun H x; simp at Hx; clear H | |
rw [Hx]; simp; clear Hx | |
suffices : | |
eqToHom (Functor.congr_obj (unit_comm._proof_1 M) x) ≫ | |
M.domMap.map (G.map f) ≫ eqToHom (right_comm_obj M a) = | |
G'.map (eqToHom (homEquiv_comm._proof_2 M x)) ≫ G'.map (M.codMap.map f); rw [this] | |
apply eq_of_heq | |
apply HEq.trans; apply eqToHom_comp_heq | |
apply HEq.trans; apply comp_eqToHom_heq | |
rw [<- Functor.comp_map] | |
apply HEq.trans | |
· show HEq ((G ⋙ M.domMap).map f) ((M.codMap ⋙ G').map f) | |
apply Functor.hcongr_hom | |
exact M.right_comm | |
· simp | |
rw [<- G'.map_comp] | |
have E := (eqToHom_comp_heq (M.codMap.map f) (homEquiv_comm._proof_2 M x)).symm | |
apply Functor.hcongr G' E ?_ rfl | |
exact M.left_comm_obj x | |
-- 双対だし、いつかやればいいや | |
-- lemma Adjunction.preMap.homEquiv_comm_iff_counit_comm : | |
-- (∀ x a f, M.homEquiv_comm φ φ' x a f) ↔ M.counit_comm φ φ' | |
-- := by | |
-- sorry | |
end cast | |
structure Adjunction.Map | |
[Category X] [Category X'] [Category A] [Category A'] | |
{F : X ⥤ A} {F' : X' ⥤ A'} {G : A ⥤ X} {G' : A' ⥤ X'} | |
(φ : F ⊣ G) (φ' : F' ⊣ G') extends M : Adjunction.preMap F G F' G' where | |
homEquiv_comm (x : X) (a : A) (f : F.obj x ⟶ a) : M.homEquiv_comm φ φ' x a f | |
end Map |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment