This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import Mathlib.tactic | |
open CategoryTheory | |
@[ext] | |
structure Mnd (X : Type) [Category X] extends T : X ⥤ X where | |
η : Functor.id X ⟶ T | |
μ : T ⋙ T ⟶ T | |
assoc (x : X) : T.map (μ.app x) ≫ μ.app x = μ.app (T.obj x) ≫ μ.app x | |
left_unit (x : X) : η.app (T.obj x) ≫ μ.app x = 𝟙 (T.obj x) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import Mathlib.tactic | |
import Mathlib.CategoryTheory.Limits.HasLimits | |
import Mathlib.CategoryTheory.Limits.Shapes.Terminal | |
import Mathlib.CategoryTheory.Limits.Shapes.Equalizers | |
import Mathlib.CategoryTheory.Comma.StructuredArrow.Basic | |
import Mathlib.CategoryTheory.Limits.Creates | |
import Mathlib.CategoryTheory.Limits.HasLimits | |
open CategoryTheory | |
open Limits |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import Mathlib.tactic | |
import Mathlib.CategoryTheory.Limits.Creates | |
open CategoryTheory | |
open Limits | |
#check LiftableCone | |
/- | |
c : Cone (K ⋙ F) がLiftable |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import Mathlib | |
open CategoryTheory | |
section Conjugate | |
variable [Category X] [Category A] {F F' : X ⥤ A} {G G' : A ⥤ X} | |
def isConjugate (φ : F ⊣ G) (φ' : F'⊣ G') (σ : F ⟶ F') (τ : G' ⟶ G) := | |
∀ (x : X) (a : A) (f : F'.obj x ⟶ a), (φ.homEquiv x a) (σ.app x ≫ f) = (φ'.homEquiv x a) f ≫ τ.app a |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import Mathlib.tactic | |
open CategoryTheory | |
lemma Functor.hcongr [Category X] [Category Y] | |
{a b c d : X} {f : a ⟶ b} {g : c ⟶ d} | |
(F : X ⥤ Y) (H : HEq f g) (Eac : a = c) (Ebd : b = d): | |
HEq (F.map f) (F.map g) | |
:= by | |
subst c d |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import Mathlib.tactic | |
open CategoryTheory | |
example [Category X] [Category A] (φ : X ≌ A) : | |
φ.functor ⊣ φ.inverse | |
:= { | |
unit := φ.unitIso.hom | |
counit := φ.counitIso.hom |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import Mathlib.tactic | |
import Mathlib.CategoryTheory.Functor.Currying | |
import Mathlib.CategoryTheory.Comma.StructuredArrow.Basic | |
import Mathlib.CategoryTheory.Limits.Shapes.IsTerminal | |
open CategoryTheory | |
open Limits | |
/----------- / | |
/ 普遍射の定義 / |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import Mathlib.tactic | |
import Mathlib.CategoryTheory.Limits.HasLimits | |
import Mathlib.CategoryTheory.Limits.Preserves.Basic | |
open CategoryTheory | |
open Limits | |
lemma Adjunction_PreservesLimit [Category 𝓐] [Category 𝓑] (F : 𝓐 ⥤ 𝓑) (G : 𝓑 ⥤ 𝓐) (σ : F ⊣ G) : | |
PreservesColimits F | |
:= by |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import Mathlib.tactic | |
import Mathlib.CategoryTheory.Limits.HasLimits | |
open CategoryTheory | |
open Limits | |
structure Elm [Category.{u, v} 𝓐] (X : 𝓐ᵒᵖ ⥤ Type w) where | |
obj : 𝓐 | |
elm : X.obj (Opposite.op obj) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import Mathlib.tactic | |
open CategoryTheory | |
-- F.Full := Function.Surjective F.map | |
-- F.Faithful := Function.Injective F.map | |
-- F.FullyFaithful := Function.Bijective F.map | |
structure equiv (𝓐 𝓑 : Type) [Category 𝓐] [Category 𝓑] where | |
func : 𝓐 ⥤ 𝓑 |
NewerOlder