Created
July 2, 2025 05:33
-
-
Save gaxiiiiiiiiiiii/a19600ddbdafb5b1bac95b89b07b02f7 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import Mathlib.tactic | |
open CategoryTheory | |
@[ext] | |
structure Mnd (X : Type) [Category X] extends T : X ⥤ X where | |
η : Functor.id X ⟶ T | |
μ : T ⋙ T ⟶ T | |
assoc (x : X) : T.map (μ.app x) ≫ μ.app x = μ.app (T.obj x) ≫ μ.app x | |
left_unit (x : X) : η.app (T.obj x) ≫ μ.app x = 𝟙 (T.obj x) | |
right_unit (x : X) : T.map (η.app x) ≫ μ.app x = 𝟙 (T.obj x) | |
def Adjunction.Mnd [Category X] [Category A] {F : X ⥤ A} {G : A ⥤ X} (φ : F ⊣ G) : Mnd X := by | |
use F ⋙ G, φ.unit, whiskerLeft F (whiskerRight φ.counit G) | |
· intro x; simp | |
rw [<- G.map_comp, <- G.map_comp] | |
have E := φ.counit.naturality (φ.counit.app (F.obj x)) | |
rw [Functor.comp_map] at E | |
conv at E => arg 1; arg 2; simp | |
rw [E] | |
simp | |
· intro x | |
conv => arg 1; arg 1; simp | |
conv => arg 1; arg 2; simp | |
conv => arg 2; simp | |
rw [φ.right_triangle_components] | |
· intro x; simp | |
rw [<- G.map_comp, φ.left_triangle_components]; simp | |
structure Mnd.Alg [Category X] (M : Mnd X) where | |
A : X | |
a : M.T.obj A ⟶ A | |
assoc : M.μ.app A ≫ a = M.T.map a ≫ a | |
unit : M.η.app A ≫ a = 𝟙 A | |
@[ext] | |
structure Mnd.AlgHom [Category X] {M : Mnd X} (x x' : Mnd.Alg M) where | |
hom : x.A ⟶ x'.A | |
w : x.a ≫ hom = M.T.map hom ≫ x'.a | |
instance Mnd.Alg.category [Category X] (M : Mnd X) : Category (Mnd.Alg M) where | |
Hom := Mnd.AlgHom | |
id x := { | |
hom := 𝟙 x.A | |
w := by simp | |
} | |
comp {x y z} f g := by | |
rcases f with ⟨f, Hf⟩ | |
rcases g with ⟨g, Hg⟩ | |
refine { | |
hom := f ≫ g | |
w := by simp; rw [<- Hg, <- Category.assoc, Hf]; simp | |
} | |
id_comp f := by simp | |
comp_id f := by simp | |
assoc f g h := by simp | |
def Mnd.free [Category X] (T : Mnd X) : | |
X ⥤ Mnd.Alg T | |
:= { | |
obj x := { | |
A := T.obj x | |
a := T.μ.app x | |
assoc := by rw [T.assoc x] | |
unit := by rw [T.left_unit x] | |
} | |
map {x x'} f := { | |
hom := T.map f | |
w := by | |
simp | |
have E := T.μ.naturality (f) | |
rw [<- E]; simp | |
} | |
map_id x := by | |
apply Mnd.AlgHom.ext; | |
simp [CategoryStruct.id] | |
map_comp {x y z} f g := by | |
apply Mnd.AlgHom.ext | |
simp [CategoryStruct.comp] | |
} | |
def Mnd.forget [Category X] (T : Mnd X) : | |
Mnd.Alg T ⥤ X | |
:= { | |
obj x := x.A | |
map {x x'} f := f.hom | |
map_id x := by simp [CategoryStruct.id] | |
map_comp {x y z} f g := by | |
rcases f with ⟨f, Hf⟩ | |
rcases g with ⟨g, Hg⟩ | |
simp [CategoryStruct.comp] | |
} | |
lemma Mnd.free_forget_eq [Category X] (T : Mnd X) : | |
free T ⋙ forget T = T.T | |
:= by | |
apply CategoryTheory.Functor.ext ?_ ?_ | |
· intro x; simp [free, forget] | |
· intro x y f; simp [free, forget] | |
def Mnd.Adj [Category X] (T : Mnd X) : | |
free T ⊣ forget T | |
:= { | |
unit := T.η | |
counit := { | |
app x := { | |
hom := x.a | |
w := by | |
simp [free, forget] | |
rw [x.assoc] | |
} | |
naturality {x y} f := by | |
rcases f with ⟨f, Hf⟩ | |
simp [free, forget] | |
apply Mnd.AlgHom.ext | |
simp [CategoryStruct.comp] | |
rw [Hf] | |
} | |
left_triangle_components x := by | |
simp [free, forget] | |
simp [CategoryStruct.id, CategoryStruct.comp] | |
apply Mnd.AlgHom.ext; simp | |
have E := T.right_unit x | |
rw [E] | |
right_triangle_components x := by | |
simp [free, forget] | |
rw [x.unit] | |
} | |
def Mnd.Adj_eq_Mnd [Category X] (M : Mnd X) : | |
Adjunction.Mnd M.Adj = M | |
:= by | |
ext x | |
· simp [Adjunction.Mnd, free, forget] | |
· simp [Adjunction.Mnd, free, forget, Functor.comp] | |
· simp [Adjunction.Mnd, free, forget, Mnd.Adj] | |
· simp [Adjunction.Mnd, forget, free, Mnd.Adj] | |
ext x; simp |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment