Skip to content

Instantly share code, notes, and snippets.

@octonion
Created February 10, 2015 22:46
Show Gist options
  • Save octonion/52c4fb139ee83d40c519 to your computer and use it in GitHub Desktop.
Save octonion/52c4fb139ee83d40c519 to your computer and use it in GitHub Desktop.
California PBE and Public/Private/Charter: Output
> joined$Funding <- as.factor(joined$Funding)
> joined$Public.Private <- as.factor(joined$Public.Private)
>
> summary(joined$Funding)
aPublic Directly funded Locally funded
5153 382 172
Not in CS funding model Private
7 1667
> summary(joined$Public.Private)
PRIVATE PUBLIC
1649 5732
>
> model0 <- cbind(PBE.,Enrollment-PBE.) ~ (1|County) + (1|City) + (1|School)
> model1 <- cbind(PBE.,Enrollment-PBE.) ~ (1|County) + (1|City) + (1|School) + Funding
>
> fit0 <- glmer(model0, data=joined, family="binomial")
> fit1 <- glmer(model1, data=joined, family="binomial")
>
> anova(fit0)
Analysis of Variance Table
Df Sum Sq Mean Sq F value
> anova(fit1)
Analysis of Variance Table
Df Sum Sq Mean Sq F value
Funding 4 523.87 130.97 130.97
> anova(fit0,fit1)
Data: joined
Models:
fit0: cbind(PBE., Enrollment - PBE.) ~ (1 | County) + (1 | City) +
fit0: (1 | School)
fit1: cbind(PBE., Enrollment - PBE.) ~ (1 | County) + (1 | City) +
fit1: (1 | School) + Funding
Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
fit0 4 25964 25991 -12978 25956
fit1 8 25515 25570 -12749 25499 456.94 4 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
> summary(fit1)
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )
Formula: cbind(PBE., Enrollment - PBE.) ~ (1 | County) + (1 | City) +
(1 | School) + Funding
Data: joined
AIC BIC logLik deviance df.resid
25514.8 25569.7 -12749.4 25498.8 6974
Scaled residuals:
Min 1Q Median 3Q Max
-1.4256 -0.6272 -0.1870 0.2439 2.0957
Random effects:
Groups Name Variance Std.Dev.
School (Intercept) 1.1152 1.0560
City (Intercept) 0.8674 0.9314
County (Intercept) 0.8289 0.9104
Number of obs: 6982, groups: School, 6978; City, 919; County, 58
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.81965 0.13730 -27.819 <2e-16 ***
FundingDirectly funded 1.34812 0.07698 17.513 <2e-16 ***
FundingLocally funded 1.04913 0.11150 9.410 <2e-16 ***
FundingNot in CS funding model 0.98645 0.61510 1.604 0.109
FundingPrivate 0.75254 0.04815 15.630 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment