Skip to content

Instantly share code, notes, and snippets.

View octonion's full-sized avatar
🏠
Working from home

Christopher D. Long octonion

🏠
Working from home
View GitHub Profile
@octonion
octonion / GAME_MASTER_v0_1.protobuf
Created July 17, 2016 03:38 — forked from anonymous/GAME_MASTER_v0_1.protobuf
Pokemon Go decoded GAME_MASTER protobuf file v0.1
Result: 1
Items {
TemplateId: "BADGE_BATTLE_ATTACK_WON"
Badge {
BadgeType: BADGE_BATTLE_ATTACK_WON
BadgeRanks: 4
Targets: "\nd\350\007"
}
}
Items {
@octonion
octonion / GAME_MASTER_POKEMON_v0_2.tsv
Created July 17, 2016 03:37 — forked from anonymous/GAME_MASTER_POKEMON_v0_2.tsv
Pokemon from GAME_MASTER protobuf file v0.2 in a .tsv
We can make this file beautiful and searchable if this error is corrected: It looks like row 3 should actually have 27 columns, instead of 12 in line 2.
PkMn BaseStamina BaseAttack BaseDefense Type1 Type2 BaseCaptureRate BaseFleeRate CollisionRadiusM CollisionHeightM CollisionHeadRadiusM MovementType MovementTimerS JumpTimeS AttackTimerS QuickMoves CinematicMoves AnimTime Evolution EvolutionPips PokemonClass PokedexHeightM PokedexWeightKg HeightStdDev WeightStdDev FamilyId CandyToEvolve
1 90 126 126 HoloPokemonType.POKEMON_TYPE_GRASS HoloPokemonType.POKEMON_TYPE_POISON 0.1599999964237213 0.10000000149011612 0.3815000057220459 0.6539999842643738 0.27250000834465027 HoloPokemonMovementType.POKEMON_ENC_MOVEMENT_JUMP 10.0 1.149999976158142 29.0 d601dd01 5a3b76 6d56d53fdaac2a3f6d56d53f93a9ea3f0000000036ab0a403333b33fbfbbbb3f 02 HoloPokemonClass.POKEMON_CLASS_NORMAL 1 0.699999988079071 6.900000095367432 0.08749999850988388 0.862500011920929 HoloPokemonFamilyId.V0001_FAMILY_BULBASAUR 25
2 120 156 158 HoloPokemonType.POKEMON_TYPE_GRASS HoloPokemonType.POKEMON_TYPE_POISON 0.07999999821186066 0.07000000029802322 0.3187499940395355 0.637499988079071 0.2549999952316284 H
@octonion
octonion / cbse_2013_subjects.txt
Created February 27, 2015 04:46
Difficulty ranking and number of students for 2013 CBSE exams
subject | diff | n
--------------------+--------+--------
SPANISH | -2.872 | 1
PHILOSOPHY | -2.278 | 150
MATHEMATICS | -1.622 | 518181
JAPANESE | -1.544 | 13
GERMAN | -1.481 | 38
FRENCH | -1.394 | 63
BUSINESS STUDIES | -1.166 | 8110
ECONOMICS | -1.155 | 351796
@octonion
octonion / pbe_funding.txt
Created February 10, 2015 22:46
California PBE and Public/Private/Charter: Output
> joined$Funding <- as.factor(joined$Funding)
> joined$Public.Private <- as.factor(joined$Public.Private)
>
> summary(joined$Funding)
aPublic Directly funded Locally funded
5153 382 172
Not in CS funding model Private
7 1667
> summary(joined$Public.Private)
PRIVATE PUBLIC
@octonion
octonion / pbe_frpm.R
Created February 10, 2015 22:28
California PBE and Free/Reduced Price Meals
library(lme4)
rates <- read.csv("data/cakd1314.csv", header=TRUE, stringsAsFactors=FALSE)
poverty <- read.csv("data/frpm1314.csv", header=TRUE, stringsAsFactors=FALSE)
dim(rates)
dim(poverty)
joined <- merge(rates, poverty, by="School.Code", all.x=TRUE)
dim(joined)
joined$School <- as.factor(paste(joined$County, ":" , joined$City, ":", joined$School.Name.x, sep=""))
@octonion
octonion / public_private_fixef.txt
Created February 8, 2015 02:54
California Public vs Private PBE Rates: Fixed Effect Estimates
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.11319 0.14830 -20.99 <2e-16 ***
PUBLIC.PRIVATEPUBLIC -0.60601 0.04971 -12.19 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
@octonion
octonion / public_private_anova.txt
Created February 8, 2015 02:48
California PBE Public vs Private ANOVA
> anova(fit0,fit1)
Data: rates
Models:
fit0: cbind(PBE., ENROLLMENT - PBE.) ~ (1 | COUNTY) + (1 | CITY) +
fit0: (1 | SCHOOL)
fit1: cbind(PBE., ENROLLMENT - PBE.) ~ (1 | COUNTY) + (1 | CITY) +
fit1: (1 | SCHOOL) + PUBLIC.PRIVATE
Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
fit0 4 25964 25991 -12978 25956
fit1 5 25841 25875 -12915 25831 124.95 1 < 2.2e-16 ***
@octonion
octonion / public_private.R
Created February 8, 2015 02:44
California Public vs Private Schools and Personal Belief Exemptions
library(lme4)
rates <- read.csv("data/cakd1314.csv", header=TRUE)
head(rates)
summary(rates)
colnames(rates)
rates$SCHOOL <- paste(rates$COUNTY, ":" , rates$CITY, ":", rates$SCHOOL.NAME, sep="")
rates$CITY <- paste(rates$COUNTY, ":" , rates$CITY, sep="")
@octonion
octonion / waldo69.sol
Created February 7, 2015 23:13
Where's Waldo as a Traveling Salesman Problem: Solution
68
0 7 5 1 2 6 4 8 48 46
45 42 43 55 44 47 50 51 49 3
34 33 35 36 41 38 37 39 40 52
54 53 58 57 61 66 67 65 64 63
62 56 59 60 28 29 31 32 30 24
25 19 17 18 15 16 14 13 20 22
21 23 26 27 9 10 11 12
@octonion
octonion / waldo69.tsp
Created February 7, 2015 23:11
Where's Waldo as a Traveling Salesman Problem
NAME : waldo68
COMMENT : 68 locations of Waldo
TYPE : TSP
DIMENSION : 68
EDGE_WEIGHT_TYPE : EUC_2D
NODE_COORD_SECTION
0 0.625000000 7.708333333
1 4.944444444 6.569444444
2 5.430555556 6.402777778
3 5.902777778 6.083333333