Last active
July 27, 2021 17:20
-
-
Save sxjscience/8f9af554b5786ebfc04bb8211b8a7250 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
import os | |
from auto_mm_bench.datasets_with_image import dataset_with_image_registry, create_dataset | |
from autogluon.core.features.feature_metadata import FeatureMetadata | |
from autogluon.tabular import TabularPredictor | |
BASELINE_HPARAMS = { | |
'FASTAI': {}, | |
} | |
train_dataset = create_dataset('san_francisco_airbnb', 'train') | |
single_image_train_df = train_dataset.get_df_with_single_image() | |
single_image_train_df = single_image_train_df[list(set(train_dataset.feature_columns + train_dataset.label_columns[:1]) - set(train_dataset.image_columns[1:]))] | |
feature_metadata = FeatureMetadata.from_df(single_image_train_df).add_special_types( | |
{train_dataset.image_columns[0]: ['image_path']}) | |
eval_metric = train_dataset.metric | |
predictor = TabularPredictor(label=train_dataset.label_columns[0], | |
path='san_francisco_airbnb_tabular', | |
problem_type=train_dataset.problem_type, # specify problem_type | |
eval_metric=eval_metric) | |
predictor.fit( | |
train_data=single_image_train_df, | |
hyperparameters=BASELINE_HPARAMS, | |
feature_metadata=feature_metadata | |
) | |
test_dataset = create_dataset('san_francisco_airbnb', 'test') | |
predictor.leaderboard(test_dataset.get_df_with_single_image()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment