Install AutoGluon (I used version==0.1 in the submission and you may try the latest version, which may give you a better performance).
pip install autogluon
Competition in https://www.kaggle.com/c/california-house-prices
from autogluon.multimodal import MultiModalPredictor | |
from datasets import load_dataset | |
import json | |
import os | |
import time | |
import argparse | |
PAWS_X_LANGUAGE_L = ['en', 'fr', 'es', 'de', 'zh', 'ja', 'ko'] | |
os.makedirs("data_cache", exist_ok=True) |
from autogluon.multimodal import MultiModalPredictor | |
from datasets import load_dataset | |
import json | |
import os | |
import time | |
import argparse | |
train_data = load_dataset("glue", 'mrpc')['train'].to_pandas().drop('idx', axis=1) | |
test_data = load_dataset("glue", 'mrpc')['validation'].to_pandas().drop('idx', axis=1) | |
label = 'label' |
import argparse | |
import os | |
from auto_mm_bench.datasets_with_image import dataset_with_image_registry, create_dataset | |
from autogluon.core.features.feature_metadata import FeatureMetadata | |
from autogluon.tabular import TabularPredictor | |
BASELINE_HPARAMS = { | |
'FASTAI': {}, | |
} |
import time | |
import torch | |
from transformers import GPTNeoForCausalLM, AutoConfig, GPT2Tokenizer | |
import torch | |
import hashlib | |
import transformers | |
import argparse | |
import collections | |
import os | |
import logging |
import os | |
from PIL import Image | |
base_dir = 'image manually' | |
with open('label_file.txt', 'w') as of: | |
for filename in os.listdir(base_dir): | |
print('Labeling filename', filename) | |
img = Image.open(os.path.join(base_dir, filename)) | |
img.show() | |
label = input('Flood = 0, Non-flood=1: ') |
Install AutoGluon (I used version==0.1 in the submission and you may try the latest version, which may give you a better performance).
pip install autogluon
Competition in https://www.kaggle.com/c/california-house-prices
import pandas as pd | |
import numpy as np | |
import argparse | |
import os | |
import json | |
import random | |
from autogluon.tabular import TabularPredictor | |
from autogluon.text import TextPredictor | |
from autogluon.text.text_prediction.infer_types import infer_column_problem_types | |
from autogluon.text.text_prediction import constants as _C |
export SQUAD_DIR=/home/ubuntu/squad | |
python3 -m torch.distributed.launch --nproc_per_node=4 ./examples/question-answering/run_squad.py \ | |
--model_type albert \ | |
--model_name_or_path albert-base-v2 \ | |
--do_train \ | |
--do_eval \ | |
--version_2_with_negative \ | |
--train_file $SQUAD_DIR/train-v2.0.json \ | |
--predict_file $SQUAD_DIR/dev-v2.0.json \ | |
--learning_rate 3e-5 \ |
for MODEL_NAME in albert_base \ | |
albert_large \ | |
albert_xlarge \ | |
albert_xxlarge \ | |
electra_base \ | |
electra_large \ | |
electra_small \ | |
roberta_large \ | |
uncased_bert_base \ | |
uncased_bert_large \ |
FROM nvidia/cuda:10.2-cudnn7-devel-ubuntu18.04 | |
LABEL maintainer="GluonNLP Team" | |
ARG DEBIAN_FRONTEND=noninteractive | |
ENV PYTHONDONTWRITEBYTECODE=1 \ | |
PYTHONUNBUFFERED=1 \ | |
LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:/usr/local/lib" \ | |
PYTHONIOENCODING=UTF-8 \ |