Last active
June 18, 2021 09:04
-
-
Save sxjscience/9499a1be01288049b8192a55bb51d2b7 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
import torch | |
from transformers import GPTNeoForCausalLM, AutoConfig, GPT2Tokenizer | |
import torch | |
import hashlib | |
import transformers | |
import argparse | |
import collections | |
import os | |
import logging | |
import requests | |
from tqdm import tqdm | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.INFO) | |
if (logger.hasHandlers()): | |
logger.handlers.clear() | |
console = logging.StreamHandler() | |
logger.addHandler(console) | |
parser = argparse.ArgumentParser(description='Generate sample from GPT-6B model.') | |
parser.add_argument('--max_length', type=int, default='512') | |
parser.add_argument('--top_p', type=float, default=0.9) | |
parser.add_argument('--context', type=str, default="Why AutoGluon is great?") | |
args = parser.parse_args() | |
def check_sha1(filename, sha1_hash): | |
"""Check whether the sha1 hash of the file content matches the expected hash. | |
Parameters | |
---------- | |
filename : str | |
Path to the file. | |
sha1_hash : str | |
Expected sha1 hash in hexadecimal digits. | |
Returns | |
------- | |
bool | |
Whether the file content matches the expected hash. | |
""" | |
sha1 = hashlib.sha1() | |
with open(filename, 'rb') as f: | |
while True: | |
data = f.read(1048576) | |
if not data: | |
break | |
sha1.update(data) | |
return sha1.hexdigest() == sha1_hash | |
def download(url, path=None, overwrite=False, sha1_hash=None): | |
"""Download files from a given URL. | |
Parameters | |
---------- | |
url : str | |
URL where file is located | |
path : str, optional | |
Destination path to store downloaded file. By default stores to the | |
current directory with same name as in url. | |
overwrite : bool, optional | |
Whether to overwrite destination file if one already exists at this location. | |
sha1_hash : str, optional | |
Expected sha1 hash in hexadecimal digits (will ignore existing file when hash is specified | |
but doesn't match). | |
Returns | |
------- | |
str | |
The file path of the downloaded file. | |
""" | |
if path is None: | |
fname = os.path.join(url.split('/')[-2],url.split('/')[-1]) | |
else: | |
path = os.path.expanduser(path) | |
if os.path.isdir(path): | |
fname = os.path.join(path, url.split('/')[-1]) | |
else: | |
fname = path | |
if overwrite or not os.path.exists(fname) or (sha1_hash and not check_sha1(fname, sha1_hash)): | |
dirname = os.path.dirname(os.path.abspath(os.path.expanduser(fname))) | |
if not os.path.exists(dirname): | |
os.makedirs(dirname) | |
logger.info('Downloading %s from %s...'%(fname, url)) | |
r = requests.get(url, stream=True) | |
if r.status_code != 200: | |
raise RuntimeError("Failed downloading url %s"%url) | |
total_length = r.headers.get('content-length') | |
with open(fname, 'wb') as f: | |
if total_length is None: # no content length header | |
for chunk in r.iter_content(chunk_size=1024): | |
if chunk: # filter out keep-alive new chunks | |
f.write(chunk) | |
else: | |
total_length = int(total_length) | |
for chunk in tqdm(r.iter_content(chunk_size=1024), | |
total=int(total_length / 1024. + 0.5), | |
unit='KB', unit_scale=False, dynamic_ncols=True): | |
f.write(chunk) | |
if sha1_hash and not check_sha1(fname, sha1_hash): | |
raise UserWarning('File {} is downloaded but the content hash does not match. ' \ | |
'The repo may be outdated or download may be incomplete. ' \ | |
'If the "repo_url" is overridden, consider switching to ' \ | |
'the default repo.'.format(fname)) | |
return fname | |
def main(): | |
urls = [('https://zhisu-nlp.s3.us-west-2.amazonaws.com/gpt-j-hf/config.json', | |
'a0af27bcff3c0fa17ec9718ffb6060b8db5e54e4'), | |
('https://zhisu-nlp.s3.us-west-2.amazonaws.com/gpt-j-hf/pytorch_model.bin', None)] | |
for (url, sha1_hash) in urls: | |
download(url, sha1_hash=sha1_hash) | |
print("download finished", flush=True) | |
config = './gpt-j-hf/config.json' | |
print("Load the GPT-6B model", flush=True) | |
model = GPTNeoForCausalLM.from_pretrained("./gpt-j-hf") | |
tokenizer = transformers.GPT2Tokenizer.from_pretrained('gpt2') | |
model.eval() | |
model.half().cuda() # This should take about 12GB of Graphics RAM, if you have a larger than 16GB gpu you don't need the half() | |
print('Loaded!') | |
input_text = args.context | |
input_ids = tokenizer.encode(str(input_text), return_tensors='pt').cuda() | |
output = model.generate( | |
input_ids, | |
do_sample=True, | |
max_length=args.max_length, | |
top_p=args.top_p, | |
top_k=0, | |
temperature=1.0, | |
) | |
print(tokenizer.decode(output[0], skip_special_tokens=True)) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment