Last active
July 12, 2022 08:17
-
-
Save sxjscience/b011460574c7e41c47a42ba86d026cbc to your computer and use it in GitHub Desktop.
AutoMM mT5 single GPU finetune
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from autogluon.multimodal import MultiModalPredictor | |
from datasets import load_dataset | |
import json | |
import os | |
import time | |
import argparse | |
train_data = load_dataset("glue", 'mrpc')['train'].to_pandas().drop('idx', axis=1) | |
test_data = load_dataset("glue", 'mrpc')['validation'].to_pandas().drop('idx', axis=1) | |
label = 'label' | |
backbone = 'google/mt5-xl' | |
pooling_mode = 'mean' | |
efficient_finetune = 'lora_norm' | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description='Process some integers.') | |
parser.add_argument('--prompt',type=str, help='the prompt that may indicate the task.', default='') | |
parser.add_argument('--lr_decay',type=float, help='lr_decay', default=1.0) | |
parser.add_argument('--learning_rate',type=float, help='learning rate', default=1e-03) | |
parser.add_argument('--efficient_finetune',type=str, help='efficient finetuning type', default='lora_norm') | |
parser.add_argument('--pooling_mode', type=str, help='pooling mode', default='mean') | |
parser.add_argument('--seed', default=1) | |
args = parser.parse_args() | |
save_path = f'{backbone}_{args.pooling_mode}_{args.efficient_finetune}_lr{args.learning_rate}_{args.lr_decay}_prompt_{args.prompt}' | |
train_data['sentence1'] = train_data['sentence1'].apply(lambda ele: args.prompt + ' ' + ele) | |
test_data['sentence1'] = test_data['sentence1'].apply(lambda ele: args.prompt + ' ' + ele) | |
train_start = time.time() | |
predictor = MultiModalPredictor(label=label, path=save_path, seed=args.seed).fit( | |
train_data, | |
hyperparameters={ | |
"model.hf_text.checkpoint_name": backbone, | |
"model.hf_text.gradient_checkpointing": True, | |
"model.hf_text.pooling_mode": args.pooling_mode, | |
"optimization.efficient_finetune": args.efficient_finetune, | |
"optimization.lr_decay": args.lr_decay, | |
"optimization.learning_rate": args.learning_rate, | |
"env.precision": "bf16", | |
"env.num_gpus": 1, | |
}) | |
train_end = time.time() | |
predictions = predictor.predict(test_data) | |
score = predictor.evaluate(test_data, metrics=['acc', 'f1']) | |
score.update({'time_cost': train_end - train_start}) | |
print(score) | |
with open(os.path.join(save_path, 'results.json'), 'w') as f: | |
json.dump(score, f) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Results on g4.12 (with single GPU).