-
-
Save ycopin/3342888 to your computer and use it in GitHub Desktop.
| #!/usr/bin/env python | |
| # Copyright: This document has been placed in the public domain. | |
| """ | |
| Taylor diagram (Taylor, 2001) implementation. | |
| Note: If you have found these software useful for your research, I would | |
| appreciate an acknowledgment. | |
| """ | |
| __version__ = "Time-stamp: <2018-12-06 11:43:41 ycopin>" | |
| __author__ = "Yannick Copin <[email protected]>" | |
| import numpy as NP | |
| import matplotlib.pyplot as PLT | |
| class TaylorDiagram(object): | |
| """ | |
| Taylor diagram. | |
| Plot model standard deviation and correlation to reference (data) | |
| sample in a single-quadrant polar plot, with r=stddev and | |
| theta=arccos(correlation). | |
| """ | |
| def __init__(self, refstd, | |
| fig=None, rect=111, label='_', srange=(0, 1.5), extend=False): | |
| """ | |
| Set up Taylor diagram axes, i.e. single quadrant polar | |
| plot, using `mpl_toolkits.axisartist.floating_axes`. | |
| Parameters: | |
| * refstd: reference standard deviation to be compared to | |
| * fig: input Figure or None | |
| * rect: subplot definition | |
| * label: reference label | |
| * srange: stddev axis extension, in units of *refstd* | |
| * extend: extend diagram to negative correlations | |
| """ | |
| from matplotlib.projections import PolarAxes | |
| import mpl_toolkits.axisartist.floating_axes as FA | |
| import mpl_toolkits.axisartist.grid_finder as GF | |
| self.refstd = refstd # Reference standard deviation | |
| tr = PolarAxes.PolarTransform() | |
| # Correlation labels | |
| rlocs = NP.array([0, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 1]) | |
| if extend: | |
| # Diagram extended to negative correlations | |
| self.tmax = NP.pi | |
| rlocs = NP.concatenate((-rlocs[:0:-1], rlocs)) | |
| else: | |
| # Diagram limited to positive correlations | |
| self.tmax = NP.pi/2 | |
| tlocs = NP.arccos(rlocs) # Conversion to polar angles | |
| gl1 = GF.FixedLocator(tlocs) # Positions | |
| tf1 = GF.DictFormatter(dict(zip(tlocs, map(str, rlocs)))) | |
| # Standard deviation axis extent (in units of reference stddev) | |
| self.smin = srange[0] * self.refstd | |
| self.smax = srange[1] * self.refstd | |
| ghelper = FA.GridHelperCurveLinear( | |
| tr, | |
| extremes=(0, self.tmax, self.smin, self.smax), | |
| grid_locator1=gl1, tick_formatter1=tf1) | |
| if fig is None: | |
| fig = PLT.figure() | |
| ax = FA.FloatingSubplot(fig, rect, grid_helper=ghelper) | |
| fig.add_subplot(ax) | |
| # Adjust axes | |
| ax.axis["top"].set_axis_direction("bottom") # "Angle axis" | |
| ax.axis["top"].toggle(ticklabels=True, label=True) | |
| ax.axis["top"].major_ticklabels.set_axis_direction("top") | |
| ax.axis["top"].label.set_axis_direction("top") | |
| ax.axis["top"].label.set_text("Correlation") | |
| ax.axis["left"].set_axis_direction("bottom") # "X axis" | |
| ax.axis["left"].label.set_text("Standard deviation") | |
| ax.axis["right"].set_axis_direction("top") # "Y-axis" | |
| ax.axis["right"].toggle(ticklabels=True) | |
| ax.axis["right"].major_ticklabels.set_axis_direction( | |
| "bottom" if extend else "left") | |
| if self.smin: | |
| ax.axis["bottom"].toggle(ticklabels=False, label=False) | |
| else: | |
| ax.axis["bottom"].set_visible(False) # Unused | |
| self._ax = ax # Graphical axes | |
| self.ax = ax.get_aux_axes(tr) # Polar coordinates | |
| # Add reference point and stddev contour | |
| l, = self.ax.plot([0], self.refstd, 'k*', | |
| ls='', ms=10, label=label) | |
| t = NP.linspace(0, self.tmax) | |
| r = NP.zeros_like(t) + self.refstd | |
| self.ax.plot(t, r, 'k--', label='_') | |
| # Collect sample points for latter use (e.g. legend) | |
| self.samplePoints = [l] | |
| def add_sample(self, stddev, corrcoef, *args, **kwargs): | |
| """ | |
| Add sample (*stddev*, *corrcoeff*) to the Taylor | |
| diagram. *args* and *kwargs* are directly propagated to the | |
| `Figure.plot` command. | |
| """ | |
| l, = self.ax.plot(NP.arccos(corrcoef), stddev, | |
| *args, **kwargs) # (theta, radius) | |
| self.samplePoints.append(l) | |
| return l | |
| def add_grid(self, *args, **kwargs): | |
| """Add a grid.""" | |
| self._ax.grid(*args, **kwargs) | |
| def add_contours(self, levels=5, **kwargs): | |
| """ | |
| Add constant centered RMS difference contours, defined by *levels*. | |
| """ | |
| rs, ts = NP.meshgrid(NP.linspace(self.smin, self.smax), | |
| NP.linspace(0, self.tmax)) | |
| # Compute centered RMS difference | |
| rms = NP.sqrt(self.refstd**2 + rs**2 - 2*self.refstd*rs*NP.cos(ts)) | |
| contours = self.ax.contour(ts, rs, rms, levels, **kwargs) | |
| return contours | |
| def test1(): | |
| """Display a Taylor diagram in a separate axis.""" | |
| # Reference dataset | |
| x = NP.linspace(0, 4*NP.pi, 100) | |
| data = NP.sin(x) | |
| refstd = data.std(ddof=1) # Reference standard deviation | |
| # Generate models | |
| m1 = data + 0.2*NP.random.randn(len(x)) # Model 1 | |
| m2 = 0.8*data + .1*NP.random.randn(len(x)) # Model 2 | |
| m3 = NP.sin(x-NP.pi/10) # Model 3 | |
| # Compute stddev and correlation coefficient of models | |
| samples = NP.array([ [m.std(ddof=1), NP.corrcoef(data, m)[0, 1]] | |
| for m in (m1, m2, m3)]) | |
| fig = PLT.figure(figsize=(10, 4)) | |
| ax1 = fig.add_subplot(1, 2, 1, xlabel='X', ylabel='Y') | |
| # Taylor diagram | |
| dia = TaylorDiagram(refstd, fig=fig, rect=122, label="Reference", | |
| srange=(0.5, 1.5)) | |
| colors = PLT.matplotlib.cm.jet(NP.linspace(0, 1, len(samples))) | |
| ax1.plot(x, data, 'ko', label='Data') | |
| for i, m in enumerate([m1, m2, m3]): | |
| ax1.plot(x, m, c=colors[i], label='Model %d' % (i+1)) | |
| ax1.legend(numpoints=1, prop=dict(size='small'), loc='best') | |
| # Add the models to Taylor diagram | |
| for i, (stddev, corrcoef) in enumerate(samples): | |
| dia.add_sample(stddev, corrcoef, | |
| marker='$%d$' % (i+1), ms=10, ls='', | |
| mfc=colors[i], mec=colors[i], | |
| label="Model %d" % (i+1)) | |
| # Add grid | |
| dia.add_grid() | |
| # Add RMS contours, and label them | |
| contours = dia.add_contours(colors='0.5') | |
| PLT.clabel(contours, inline=1, fontsize=10, fmt='%.2f') | |
| # Add a figure legend | |
| fig.legend(dia.samplePoints, | |
| [ p.get_label() for p in dia.samplePoints ], | |
| numpoints=1, prop=dict(size='small'), loc='upper right') | |
| return dia | |
| def test2(): | |
| """ | |
| Climatology-oriented example (after iteration w/ Michael A. Rawlins). | |
| """ | |
| # Reference std | |
| stdref = 48.491 | |
| # Samples std,rho,name | |
| samples = [[25.939, 0.385, "Model A"], | |
| [29.593, 0.509, "Model B"], | |
| [33.125, 0.585, "Model C"], | |
| [29.593, 0.509, "Model D"], | |
| [71.215, 0.473, "Model E"], | |
| [27.062, 0.360, "Model F"], | |
| [38.449, 0.342, "Model G"], | |
| [35.807, 0.609, "Model H"], | |
| [17.831, 0.360, "Model I"]] | |
| fig = PLT.figure() | |
| dia = TaylorDiagram(stdref, fig=fig, label='Reference', extend=True) | |
| dia.samplePoints[0].set_color('r') # Mark reference point as a red star | |
| # Add models to Taylor diagram | |
| for i, (stddev, corrcoef, name) in enumerate(samples): | |
| dia.add_sample(stddev, corrcoef, | |
| marker='$%d$' % (i+1), ms=10, ls='', | |
| mfc='k', mec='k', | |
| label=name) | |
| # Add RMS contours, and label them | |
| contours = dia.add_contours(levels=5, colors='0.5') # 5 levels in grey | |
| PLT.clabel(contours, inline=1, fontsize=10, fmt='%.0f') | |
| dia.add_grid() # Add grid | |
| dia._ax.axis[:].major_ticks.set_tick_out(True) # Put ticks outward | |
| # Add a figure legend and title | |
| fig.legend(dia.samplePoints, | |
| [ p.get_label() for p in dia.samplePoints ], | |
| numpoints=1, prop=dict(size='small'), loc='upper right') | |
| fig.suptitle("Taylor diagram", size='x-large') # Figure title | |
| return dia | |
| if __name__ == '__main__': | |
| dia = test1() | |
| dia = test2() | |
| PLT.show() |
| #!/usr/bin/env python | |
| __version__ = "Time-stamp: <2018-12-06 11:55:22 ycopin>" | |
| __author__ = "Yannick Copin <[email protected]>" | |
| """ | |
| Example of use of TaylorDiagram. Illustration dataset courtesy of Michael | |
| Rawlins. | |
| Rawlins, M. A., R. S. Bradley, H. F. Diaz, 2012. Assessment of regional climate | |
| model simulation estimates over the Northeast United States, Journal of | |
| Geophysical Research (2012JGRD..11723112R). | |
| """ | |
| from taylorDiagram import TaylorDiagram | |
| import numpy as NP | |
| import matplotlib.pyplot as PLT | |
| # Reference std | |
| stdrefs = dict(winter=48.491, | |
| spring=44.927, | |
| summer=37.664, | |
| autumn=41.589) | |
| # Sample std,rho: Be sure to check order and that correct numbers are placed! | |
| samples = dict(winter=[[17.831, 0.360, "CCSM CRCM"], | |
| [27.062, 0.360, "CCSM MM5"], | |
| [33.125, 0.585, "CCSM WRFG"], | |
| [25.939, 0.385, "CGCM3 CRCM"], | |
| [29.593, 0.509, "CGCM3 RCM3"], | |
| [35.807, 0.609, "CGCM3 WRFG"], | |
| [38.449, 0.342, "GFDL ECP2"], | |
| [29.593, 0.509, "GFDL RCM3"], | |
| [71.215, 0.473, "HADCM3 HRM3"]], | |
| spring=[[32.174, -0.262, "CCSM CRCM"], | |
| [24.042, -0.055, "CCSM MM5"], | |
| [29.647, -0.040, "CCSM WRFG"], | |
| [22.820, 0.222, "CGCM3 CRCM"], | |
| [20.505, 0.445, "CGCM3 RCM3"], | |
| [26.917, 0.332, "CGCM3 WRFG"], | |
| [25.776, 0.366, "GFDL ECP2"], | |
| [18.018, 0.452, "GFDL RCM3"], | |
| [79.875, 0.447, "HADCM3 HRM3"]], | |
| summer=[[35.863, 0.096, "CCSM CRCM"], | |
| [43.771, 0.367, "CCSM MM5"], | |
| [35.890, 0.267, "CCSM WRFG"], | |
| [49.658, 0.134, "CGCM3 CRCM"], | |
| [28.972, 0.027, "CGCM3 RCM3"], | |
| [60.396, 0.191, "CGCM3 WRFG"], | |
| [46.529, 0.258, "GFDL ECP2"], | |
| [35.230, -0.014, "GFDL RCM3"], | |
| [87.562, 0.503, "HADCM3 HRM3"]], | |
| autumn=[[27.374, 0.150, "CCSM CRCM"], | |
| [20.270, 0.451, "CCSM MM5"], | |
| [21.070, 0.505, "CCSM WRFG"], | |
| [25.666, 0.517, "CGCM3 CRCM"], | |
| [35.073, 0.205, "CGCM3 RCM3"], | |
| [25.666, 0.517, "CGCM3 WRFG"], | |
| [23.409, 0.353, "GFDL ECP2"], | |
| [29.367, 0.235, "GFDL RCM3"], | |
| [70.065, 0.444, "HADCM3 HRM3"]]) | |
| # Colormap (see http://www.scipy.org/Cookbook/Matplotlib/Show_colormaps) | |
| colors = PLT.matplotlib.cm.Set1(NP.linspace(0,1,len(samples['winter']))) | |
| # Here set placement of the points marking 95th and 99th significance | |
| # levels. For more than 102 samples (degrees freedom > 100), critical | |
| # correlation levels are 0.195 and 0.254 for 95th and 99th | |
| # significance levels respectively. Set these by eyeball using the | |
| # standard deviation x and y axis. | |
| #x95 = [0.01, 0.68] # For Tair, this is for 95th level (r = 0.195) | |
| #y95 = [0.0, 3.45] | |
| #x99 = [0.01, 0.95] # For Tair, this is for 99th level (r = 0.254) | |
| #y99 = [0.0, 3.45] | |
| x95 = [0.05, 13.9] # For Prcp, this is for 95th level (r = 0.195) | |
| y95 = [0.0, 71.0] | |
| x99 = [0.05, 19.0] # For Prcp, this is for 99th level (r = 0.254) | |
| y99 = [0.0, 70.0] | |
| rects = dict(winter=221, | |
| spring=222, | |
| summer=223, | |
| autumn=224) | |
| fig = PLT.figure(figsize=(11,8)) | |
| fig.suptitle("Precipitations", size='x-large') | |
| for season in ['winter','spring','summer','autumn']: | |
| dia = TaylorDiagram(stdrefs[season], fig=fig, rect=rects[season], | |
| label='Reference') | |
| dia.ax.plot(x95,y95,color='k') | |
| dia.ax.plot(x99,y99,color='k') | |
| # Add samples to Taylor diagram | |
| for i,(stddev,corrcoef,name) in enumerate(samples[season]): | |
| dia.add_sample(stddev, corrcoef, | |
| marker='$%d$' % (i+1), ms=10, ls='', | |
| #mfc='k', mec='k', # B&W | |
| mfc=colors[i], mec=colors[i], # Colors | |
| label=name) | |
| # Add RMS contours, and label them | |
| contours = dia.add_contours(levels=5, colors='0.5') # 5 levels | |
| dia.ax.clabel(contours, inline=1, fontsize=10, fmt='%.1f') | |
| # Tricky: ax is the polar ax (used for plots), _ax is the | |
| # container (used for layout) | |
| dia._ax.set_title(season.capitalize()) | |
| # Add a figure legend and title. For loc option, place x,y tuple inside [ ]. | |
| # Can also use special options here: | |
| # http://matplotlib.sourceforge.net/users/legend_guide.html | |
| fig.legend(dia.samplePoints, | |
| [ p.get_label() for p in dia.samplePoints ], | |
| numpoints=1, prop=dict(size='small'), loc='center') | |
| fig.tight_layout() | |
| PLT.savefig('test_taylor_4panel.png') | |
| PLT.show() |
I have noticed that when I plot curves using self._ax instead of self.ax, I get different a different line width, making the figure seem inconsistent. Do you have any idea why using self._ax instead results in a different line width?
I pushed the modified version to my repository MLDown; you can see it here.
I updated the header of the file to include the modifications that I made. Currently, I placed those changes under the MIT license, but I can perhaps (with my organizations permission) place them in the public domain instead (like the rest of the file) if you think that would simplify the file header and the copyright status?
I pushed the modified version to my repository MLDown; you can see it here.
Thanks for the heads up. It's nice to see that this old benign piece of code is still useful!
I ended up placing the entire file including my changes in the public domain (as written in the repository's LICENSE.txt file).
Btw, the paper in which I used the code is now published and is available here. In the diagrams (Figures 11 and 12), you can see an extra arc (the dashed grey arc), which I added to indicate where ML models trained with MSE loss tend to put their predictions, and the reason they tend to put them there is the following: For predictions that don't correlate perfectly with the ground truth (which they basically never do), there is going to be a prediction error. That error can be reduced by scaling the predictions (which the ML model can do easily)—which is akin to how you can apply a linear filter to reduce the amount of noise in a signal in signal processing—and the optimal scaling factor for a given correlation (i.e. the scaling factor that minimizes the MSE loss) is also the scaling factor that puts the data on the dashed grey arc in the Taylor diagram (although we chose to omit this explanation from the paper). This is especially clear in Figure 12.
It's nice to see that this old benign piece of code is still useful!
It is nice that you chose to make it freely available so that other people can use it! :)
Do you want me to create a change request, btw?
I only tried it on
and not on
pip listyields3.6.1formatplotlibso I guess that's the version of Matplotlib I use.